194
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulation of phosphatidylcholine membrane in low ionic strengths of sodium chloride

, ORCID Icon, , &
Pages 13891-13901 | Received 16 Aug 2022, Accepted 14 Feb 2023, Published online: 22 Feb 2023

References

  • Bangham, A. D., Standish, M. M., & Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 13(1), 238–252.
  • Baudry, J., Crouzy, S., Roux, B., & Smith, J. C. (1997). Quantum chemical and free energy simulation analysis of retinal conformational energetics. Journal of Chemical Information and Computer Sciences, 37(6), 1018–1024. https://doi.org/10.1021/ci9702398
  • Bigay, J., & Antonny, B. (2012). Curvature, lipid packing, and electrostatics of membrane organelles: Defining cellular territories in determining specificity. Developmental Cell, 23(5), 886–895. https://doi.org/10.1016/j.devcel.2012.10.009
  • Böckmann, R. A., Hac, A., Heimburg, T., & Grubmüller, H. (2003). Effect of sodium chloride on a lipid bilayer. Biophysical Journal, 85(3), 1647–1655. https://doi.org/10.1016/S0006-3495(03)74594-9
  • Bornemann, S., Herzog, M., Roling, L., Paulisch, T. O., Brandis, D., Kriegler, S., Galla, H.-J., Glorius, F., & Winter, R. (2020). Interaction of imidazolium-based lipids with phospholipid bilayer membranes of different complexity. Physical Chemistry Chemical Physics : PCCP, 22(17), 9775–9788. https://doi.org/10.1039/d0cp00801j
  • Cartailler, J. P., & Luecke, H. (2003). X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. Annual Review of Biophysics and Biomolecular Structure, 32(1), 285–310. https://doi.org/10.1146/annurev.biophys.32.110601.142516
  • Cockcroft, S. (2021). Mammalian lipids: Structure, synthesis and function. Essays in Biochemistry, 65(5), 813–845. https://doi.org/10.1042/EBC20200067
  • Cordomi, A., Edholm, O., & Perez, J. J. (2008). Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. A molecular dynamics simulation study. The Journal of Physical Chemistry B, 112(5), 1397–1408. https://doi.org/10.1021/jp073897w
  • Cordomí, A., Edholm, O., & Perez, J. J. (2009). Effect of force field parameters on sodium and potassium ion binding to dipalmitoyl phosphatidylcholine bilayers. Journal of Chemical Theory and Computation, 5(8), 2125–2134. https://doi.org/10.1021/ct9000763
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117(19), 5179–5197. https://doi.org/10.1021/ja00124a002
  • Davidchack, R. L., Handel, R., & Tretyakov, M. V. (2009). Langevin thermostat for rigid body dynamics. The Journal of Chemical Physics, 130(23), 234101. https://doi.org/10.1063/1.3149788
  • Dickson, C. J., Walker, R. C., & Gould, I. R. (2022). Lipid21: Complex lipid membrane simulations with AMBER. Journal of Chemical Theory and Computation, 18(3), 1726–1736. https://doi.org/10.1021/acs.jctc.1c01217
  • El-Beyrouthy, J., Makhoul-Mansour, M. M., Taylor, G., Sarles, S. A., & Freeman, E. C. (2019). A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics. Journal of the Royal Society, Interface, 16(161), 20190652. https://doi.org/10.1098/rsif.2019.0652
  • Elder, M., Hitchcock, P., Mason, R., & Shipley, G. G. (1977). A refinement analysis of the crystallography of the phospholipid, 1,2-dilauroyl-DL-phosphatidylethanolamine, and some remarks on lipid—lipid and lipid-protein interactions. Proceedings of the Royal Society of London. Series A, 354, 157–170.
  • Faizi, H. A., Frey, S. L., Steinkuhler, J., Dimova, R., & Vlahovska, P. M. (2019). Bending rigidity of charged lipid bilayer membranes. Soft Matter, 15(29), 6006–6013. https://doi.org/10.1039/c9sm00772e
  • Feller, S. E., Zhang, Y., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics, 103(11), 4613–4621. https://doi.org/10.1063/1.470648
  • Foloppe, N., & MacKerell, A. D. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21(2), 86–104. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
  • Gibson, V. P., Fauquignon, M., Ibarboure, E., Chain, J. L., & Le Meins, J. F. (2020). Switchable lipid provides pH-sensitive properties to lipid and hybrid polymer/lipid membranes. Polymers, 12(3), 637. https://doi.org/10.3390/polym12030637
  • Goto, M., Okamoto, H., Tamai, N., Fukada, K., & Matsuki, H. (2019). Salt effect on bilayer phase transitions of dipalmitoylphosphatidylglycerol in saline water. High Pressure Research, 39(2), 238–247. https://doi.org/10.1080/08957959.2019.1601189
  • Gowers, R. J., Linke, M., Barnoud, J., Reddy, T. J. E., Melo, M. N., & Seyler, S. L. (2016). MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. In S. Benthall, & S. Rostrup (Eds), Proceedings of the 15th Python in Science Conference (pp. 98–105).
  • Guixà-González, R., Rodriguez-Espigares, I., Ramírez-Anguita, J. M., Carrió-Gaspar, P., Martinez-Seara, H., Giorgino, T., & Selent, J. (2014). MEMBPLUGIN: Studying membrane complexity in VMD. Bioinformatics, 30(10), 1478–1480. https://doi.org/10.1093/bioinformatics/btu037
  • Gurtovenko, A. A., & Vattulainen, I. (2008). Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: Insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. The Journal of Physical Chemistry B, 112(7), 1953–1962. https://doi.org/10.1021/jp0750708
  • Gurtovenko, A. A., Miettinen, M., Karttunen, M., & Vattulainen, I. (2005). Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations. The Journal of Physical Chemistry. B, 109(44), 21126–21134. https://doi.org/10.1021/jp053667m
  • Hauser, H., & Shipley, G. (1983). Interactions of monovalent cations with phosphatidylserine bilayer membranes. Biochemistry, 22(9), 2171–2178.
  • Hayashi, S., & Ohmine, I. (2000). Proton transfer in bacteriorhodopsin: Structure, excitation and IR spectra, and potential energy surface analyses by an ab initio QM/MM method. The Journal of Physical Chemistry B, 104(45), 10678–10691. https://doi.org/10.1021/jp001508r
  • Hayashi, S., Tajkhorshid, E., Pebay-Peyroula, E., Royant, A., Landau, E. M., Navarro, J., & Schulten, K. (2001). Structural determinants of spectral tuning in retinal proteins bacteriorhodopsin vs sensory rhodopsin II. The Journal of Physical Chemistry B, 105(41), 10124–10131. https://doi.org/10.1021/jp011362b
  • Hodgkin, A. L., & Horowicz, P. (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. The Journal of Physiology, 148(1), 127–160. https://doi.org/10.1113/jphysiol.1959.sp006278
  • Horowitz, S., & Trievel, R. C. (2012). Carbon-oxygen hydrogen bonding in biological structure and function. Journal of Biological Chemistry, 287(50), 41576–41582. https://doi.org/10.1074/jbc.R112.418574
  • Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., D, A., & S, K. (1996). VMD—Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
  • Jurkiewicz, P., Cwiklik, L., Vojtíšková, A., Jungwirth, P., & Hof, M. (2012). Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. Biochimica et Biophysica Acta, 1818(3), 609–616.
  • Khalili-Araghi, F., Ziervogel, B., Gumbart, J. C., & Roux, B. (2013). Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations. The Journal of General Physiology, 142(4), 465–475. https://doi.org/10.1085/jgp.201311014
  • Leftin, A., Molugu, T. R., Job, C., Beyer, K., & Brown, M. F. (2014). Area per lipid and cholesterol interactions in membranes from separated local-field 13C NMR spectroscopy. Biophysical Journal, 107(10), 2274–2286. https://doi.org/10.1016/j.bpj.2014.07.044
  • Liang, B., & Tamm, L. K. (2016). NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nature Structural & Molecular Biology, 23(6), 468–474. https://doi.org/10.1038/nsmb.3226
  • Lindblom, G., & Orädd, G. (1994). NMR Studies of translational diffusion in lyotropic liquid crystals and lipid membranes. Progress in Nuclear Magnetic Resonance Spectroscopy, 26, 483–515. https://doi.org/10.1016/0079-6565(94)80014-6
  • Maciejewski, A., Pasenkiewicz-Gierula, M., Cramariuc, O., Cramariuc, I., & Rog, T. (2014). Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. The Journal of Physical Chemistry B, 118(17), 4571–4581. https://doi.org/10.1021/jp5016627
  • MacKerell, A. D., & Banavali, N. K. (2000). All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. Journal of Computational Chemistry, 21(2), 105–120. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
  • Mackerell, A. D., Feig, M., & Brooks, C. L. III (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400–1415. https://doi.org/10.1002/jcc.20065
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Marzuoli, I., Margreitter, C., & Fraternali, F. (2019). Lipid head group parameterization for GROMOS 54A8: A consistent approach with protein force field description. Journal of Chemical Theory and Computation, 15(10), 5175–5193. https://doi.org/10.1021/acs.jctc.9b00509
  • Mattai, J., Hauser, H., Demel, R. A., & Shipley, G. G. (1989). Interactions of metal ions with phosphatidylserine bilayer membranes: Effect of hydrocarbon chain unsaturation. Biochemistry, 28(5), 2322–2330. https://doi.org/10.1021/bi00431a051
  • Melcr, J., Martinez-Seara, H., Nencini, R., Kolafa, J., Jungwirth, P., & Ollila, O. H. S. (2018). Accurate binding of sodium and calcium to a POPC bilayer by effective inclusion of electronic polarization. The Journal of Physical Chemistry B, 122(16), 4546–4557. https://doi.org/10.1021/acs.jpcb.7b12510
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. [Database] https://doi.org/10.1002/jcc.21787
  • Montenegro, F. A., Cantero, J. R., & Barrera, N. P. (2017). Combining mass spectrometry and X-ray crystallography for analyzing native-like membrane protein lipid complexes. Frontiers in Physiology, 8, 892. https://doi.org/10.3389/fphys.2017.00892
  • Mukhopadhyay, P., Monticelli, L., & Tieleman, D. P. (2004). Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na + counterions and NaCl. Biophysical Journal, 86(3), 1601–1609.
  • Murphy, M. A., Mun, S., Horstemeyer, M. F., Baskes, M. I., Bakhtiary, A., LaPlaca, M. C., Gwaltney, S. R., Williams, L. N., & Prabhu, R. K. (2019). Molecular dynamics simulations showing 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) membrane mechanoporation damage under different strain paths. Journal of Biomolecular Structure & Dynamics, 37(5), 1346–1359. https://doi.org/10.1080/07391102.2018.1453376
  • Nagle, J. F., & Tristram-Nagle, S. (2000). Structure of lipid bilayers. Biochimica et Biophysica Acta, 1469(3), 159–195. https://doi.org/10.1016/S0304-4157(00)00016-2
  • Nass Kovacs, G., Colletier, J., & Grünbein, M. L. (2019). Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10758-0
  • Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L. V., Skeel, R. D., & Schulten, K. (1996). NAMD-A parallel, object-oriented molecular dynamics program. The International Journal of Supercomputer Applications and High Performance Computing, 10(4), 251–268. https://doi.org/10.1177/109434209601000401
  • Neves, M. C., Filipe, H. A. L., Reis, R. L., Prates Ramalho, J. P., Coreta-Gomes, F., Moreno, M. J., & Loura, L. M. S. (2019). Interaction of bile salts with lipid bilayers: An atomistic molecular dynamics study. Frontiers in Physiology, 10, 393. https://doi.org/10.3389/fphys.2019.00393
  • Nina, M., Roux, B., & Smith, J. C. (1995). Functional interactions in bacteriorhodopsin: A theoretical analysis of retinal hydrogen bonding with water. Biophysical Journal, 68(1), 25–39.
  • Pabst, G., Heberle, F. A., & Katsaras, J. (2013). X-ray scattering of lipid membranes. In G. C. Roberts (Ed.), Encyclopedia of Biophysics (pp. 2785–2791). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_554.
  • Pandit, S. A., Bostick, D., & Berkowitz, M. L. (2003). Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophysical Journal, 84(6), 3743–3750.
  • Petrache, H. I., Tristram-Nagle, S., & Nagle, J. F. (1998). Fluid phase structure of EPC and DMPC bilayers. Chemistry and Physics of Lipids, 95(1), 83–94.
  • Petrache, H. I., Tu, K., & Nagle, J. F. (1999). Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophysical Journal, 76(5), 2479–2487.
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Regan, D., Williams, J., Borri, P., & Langbein, W. (2019). Lipid bilayer thickness measured by quantitative DIC reveals phase transitions and effects of substrate hydrophilicity. Langmuir: The ACS Journal of Surfaces and Colloids, 35(43), 13805–13814. https://doi.org/10.1021/acs.langmuir.9b02538
  • Saito, H., Morishita, T., Mizukami, T., Nishiyama, K., Kawaguchi, K., & Nagao, H. (2018). Molecular dynamics study of binary POPC bilayers: Molecular condensing effects on membrane structure and dynamics. Journal of Physics: Conference Series, 1136(dec), 012022.
  • Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., & van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package. The Journal of Physical Chemistry A, 103(19), 3596–3607. https://doi.org/10.1021/jp984217f
  • Shahane, G., Ding, W., Palaiokostas, M., & Orsi, M. (2019). Physical properties of model biological lipid bilayers: Insights from all-atom molecular dynamics simulations. Journal of Molecular Modeling, 25(3), 76. https://doi.org/10.1007/s00894-019-3964-0
  • Sharma, V. K., & Mukhopadhyay, R. (2018). Deciphering interactions of ionic liquids with biomembrane. Biophysical Reviews, 10(3), 721–734. https://doi.org/10.1007/s12551-018-0410-y
  • Shinoda, W., & Okazaki, S. (1998). A Voronoi analysis of lipid area fluctuation in a bilayer. Journal of Chemical Physics, 109(4), 1517–1521. https://doi.org/10.1063/1.476702
  • Sixl, F., & Watts, A. (1982). Interactions between phospholipid head groups at membrane interfaces: A deuterium and phosphorus NMR and spin-label ESR study. Biochemistry, 21(25), 6446–6452. https://doi.org/10.1021/bi00268a020
  • Smith, M. D., & Smith, J. C. (2020). Effects of sodium and calcium chloride ionic stresses on model yeast membranes revealed by molecular dynamics simulation. Chemistry and Physics of Lipids, 233, 104980. https://doi.org/10.1016/j.chemphyslip.2020.104980
  • Sodeifian, G., & Razmimanesh, F. (2019). Diffusional interaction behavior of NSAIDs in lipid bilayer membrane using molecular dynamics (MD) simulation: Aspirin and Ibuprofen. Journal of Biomolecular Structure and Dynamics, 37(7), 1666–1684. https://doi.org/10.1080/07391102.2018.1464956
  • Song, J., Franck, J., Pincus, P., Kim, M. W., & Han, S. (2014). Specific ions modulate diffusion dynamics of hydration water on lipid membrane surfaces. Journal of the American Chemical Society, 136(6), 2642–2649. https://doi.org/10.1021/ja4121692
  • Tajkhorshid, E., & Suhai, S. (1999). Influence of the methyl groups on the structure, charge distribution and proton affinity of the retinal Schiff base. The Journal of Physical Chemistry B, 103(26), 5581–5590. https://doi.org/10.1021/jp983742b
  • Tajkhorshid, E., Baudry, J., Schulten, K., & Su, S. (2000). Molecular dynamics study of the nature and origin of retinal s twisted structure in bacteriorhodopsin. Biophysical Journal, 78(2), 683–693. https://doi.org/10.1016/S0006-3495(00)76626-4
  • Tajkhorshid, E., Paizs, B., & Suhai, S. (1997). Conformational effects on the proton affinity of the Schiff base in bacteriorhodopsin: A density functional study. The Journal of Physical Chemistry B, 101(40), 8021–8028. https://doi.org/10.1021/jp971283t
  • Träuble, H., & Eibl, H. (1974). Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment. Proceedings of the National Academy of Sciences of the United States of America, 71(1), 214–219. https://doi.org/10.1073/pnas.71.1.214
  • Tyler, A. I., Law, R. V., & Seddon, J. M. (2015). X-ray diffraction of lipid model membranes. Methods in Molecular Biology, 1232, 199–225.
  • Vácha, R., Berkowitz, M. L., & Jungwirth, P. (2009). Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: Water permeation and ion effects. Biophysical Journal, 96(11), 4493–4501. https://doi.org/10.1016/j.bpj.2009.03.010
  • Vácha, R., Jurkiewicz, P., Petrov, M., Berkowitz, M. L., Böckmann, R. A., Barucha-Kraszewska, J., Hof, M., & Jungwirth, P. (2010). Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes. The Journal of Physical Chemistry B, 114(29), 9504–9509. https://doi.org/10.1021/jp102389k
  • Vácha, R., Siu, S. W. I., Petrov, M., Böckmann, R. A., Barucha-Kraszewska, J., Jurkiewicz, P., Hof, M., Berkowitz, M. L., & Jungwirth, P. (2009). Effects of alkali cations and halide anions on the DOPC lipid membrane. The Journal of Physical Chemistry A, 113(26), 7235–7243. https://doi.org/10.1021/jp809974e
  • Valley, C. C., Perlmutter, J. D., Braun, A. R., & Sachs, J. N. (2011). NaCl interactions with phosphatidylcholine bilayers do not alter membrane structure but induce long-range ordering of ions and water. The Journal of Membrane Biology, 244(1), 35–42. https://doi.org/10.1007/s00232-011-9395-1
  • Yu, Y., Krämer, A., Venable, R. M., Brooks, B. R., Klauda, J. B., & Pastor, R. W. (2021). CHARMM36 lipid force field with explicit treatment of long-range dispersion: Parametrization and validation for phosphatidylethanolamine, phosphatidylglycerol, and ether lipids. Journal of Chemical Theory and Computation, 17(3), 1581–1595. https://doi.org/10.1021/acs.jctc.0c01327

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.