512
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel human nicotinamide N-methyltransferase inhibitors: a structure-based pharmacophore modeling and molecular dynamics approach

ORCID Icon & ORCID Icon
Pages 14638-14650 | Received 08 Sep 2022, Accepted 18 Feb 2023, Published online: 01 Mar 2023

References

  • Akar, S., Harmankaya, İ., Uğraş, S., & Çelik, Ç. (2019). Nicotinamide N-methyltransferase expression in high-grade serous carcinoma and its association with survival. Indian Journal of Gynecologic Oncology, 17(4), 4–9. https://doi.org/10.1007/s40944-019-0327-9
  • Aksoy, S., Szumlanski, C. L., & Weinshilboum, R. M. (1994). Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. Journal of Biological Chemistry, 269(20), 14835–14840. https://doi.org/10.1016/S0021-9258(17)36700-5
  • Bach, D. H., Kim, D., Bae, S. Y., Kim, W. K., Hong, J. Y., Lee, H. J., Rajasekaran, N., Kwon, S., Fan, Y., Luu, T. T. T., Shin, Y. K., Lee, J., & Lee, S. K. (2018). Targeting nicotinamide N-methyltransferase and miR-449a in EGFR-TKI-resistant non-small-cell lung cancer cells. Molecular Therapy. Nucleic Acids, 11(June), 455–467. https://doi.org/10.1016/j.omtn.2018.03.011
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Banks, J. L., Beard, H. S., Cao, Y., Cho, A. E., Damm, W., Farid, R., Felts, A. K., Halgren, T. A., Mainz, D. T., Maple, J. R., Murphy, R., Philipp, D. M., Repasky, M. P., Zhang, L. Y., Berne, B. J., Friesner, R. A., Gallicchio, E., & Levy, R. M. (2005). Integrated modeling program, applied chemical theory (IMPACT). Journal of Computational Chemistry, 26(16), 1752–1780. https://doi.org/10.1002/jcc.20292
  • BIOVIA. (2021). Dassault Systèmes, Discovery Studio Visualizer, 21.1.0, San Diego: Dassault Systèmes.
  • Brylinski, M. (2017). Local alignment of ligand binding sites in proteins for polypharmacology and drug repositioning. Methods in Molecular Biology, 1611, 109–122. https://doi.org/10.1007/978-1-4939-7015-5_9
  • Cantoni, G. L. (1951). Methylation of nicotinamide with soluble enzyme system from rat liver. Journal of Biological Chemistry, 189(1), 203–216. https://doi.org/10.1016/S0021-9258(18)56110-X
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(March), 42717–42713. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2014). Small-molecule library screening by docking with PyRx. Methods in molecular biology (pp. 243–250). Springer. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Fedorowicz, A., Mateuszuk, Ł., Kopec, G., Skórka, T., Kutryb-Zając, B., Zakrzewska, A., Walczak, M., Jakubowski, A., Łomnicka, M., Słomińska, E., & Chlopicki, S. (2016). Activation of the nicotinamide N-methyltransferase (NNMT)-1-methylnicotinamide (MNA) pathway in pulmonary hypertension. Respiratory Research, 17(1), 1–13. https://doi.org/10.1186/s12931-016-0423-7
  • Huang, R., Khalil, E. M., Mackie, B. D., & Mao, Y. (2016). Methyltransferases: key regulators in cardiovascular development and disease. Annals of Vascular Medicine and Research, 3(2), 1032.
  • Huang, N., Shoichet, B. K., & Irwin, J. J. (2006). Benchmarking sets for molecular docking. Journal of Medicinal Chemistry, 49(23), 6789–6801. https://doi.org/10.1021/jm0608356
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. https://doi.org/10.1021/ci049714+
  • Iyamu, I. D., & Huang, R. (2021). Mechanisms and inhibitors of nicotinamide N -methyltransferase. RSC Medicinal Chemistry, 12(8), 1254–1261. https://doi.org/10.1039/D1MD00016K
  • Jung, J., Kim, L. J. Y., Wang, X., Wu, Q., Sanvoranart, T., Hubert, C. G., Prager, B. C., Wallace, L. C., Jin, X., Mack, S. C., & Rich, J. N. (2017). Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight, 2(10), e90019. https://doi.org/10.1172/jci.insight.90019
  • Kannt, A., Pfenninger, A., Teichert, L., Tönjes, A., Dietrich, A., Schön, M. R., Klöting, N., & Blüher, M. (2015). Association of Nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance. Diabetologia, 58(4), 799–808. https://doi.org/10.1007/s00125-014-3490-7
  • Kannt, A., Rajagopal, S., Hallur, M. S., Swamy, I., Kristam, R., Dhakshinamoorthy, S., Czech, J., Zech, G., Schreuder, H., & Ruf, S. (2021). Novel inhibitors of nicotinamide-N-methyltransferase for the treatment of metabolic disorders. Molecules, 26(4), 991. https://doi.org/10.3390/molecules26040991
  • Kannt, A., Rajagopal, S., Kadnur, S. V., Suresh, J., Bhamidipati, R. K., Swaminathan, S., Hallur, M. S., Kristam, R., Elvert, R., Czech, J., Pfenninger, A., Rudolph, C., Schreuder, H., Chandrasekar, D. V., Mane, V. S., Birudukota, S., Shaik, S., Zope, B. R., Burri, R. R., … Dhakshinamoorthy, S. (2018). A small molecule inhibitor of Nicotinamide N-methyltransferase for the treatment of metabolic disorders. Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-22081-7
  • Karaboga, A. S., Planesas, J. M., Petronin, F., Teixidó, J., Souchet, M., & Pérez-Nueno, V. I. (2013). Highly specific and sensitive pharmacophore model for identifying CXCR4 antagonists. Comparison with docking and shape-matching virtual screening performance. Journal of Chemical Information and Modeling, 53(5), 1043–1056. https://doi.org/10.1021/ci400037y
  • Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Research, 40(W1), W409–W414. https://doi.org/10.1093/nar/gks378
  • Kraus, D., Yang, Q., Kong, D., Banks, A. S., Zhang, L., Rodgers, J. T., Pirinen, E., Pulinilkunnil, T. C., Gong, F., Wang, Y., Cen, Y., Sauve, A. A., Asara, J. M., Peroni, O. D., Monia, B. P., Bhanot, S., Alhonen, L., Puigserver, P., & Kahn, B. B. (2014). Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature, 508(7495), 258–262. https://doi.org/10.1038/nature13198
  • Li, X. Y., Pi, Y. N., Chen, Y., Zhu, Q., & Xia, B. R. (2022). Nicotinamide N-methyltransferase: A promising biomarker and target for human cancer therapy. Frontiers in Oncology, 12(June), 894744–894714. https://doi.org/10.3389/fonc.2022.894744
  • Liu, M., Li, L., Chu, J., Zhu, B., Zhang, Q., Yin, X., Jiang, W., Dai, G., Ju, W., Wang, Z., Yang, Q., & Fang, Z. (2015). Serum N(1)-methylnicotinamide is associated with obesity and diabetes in Chinese. The Journal of Clinical Endocrinology and Metabolism, 100(8), 3112–3117. https://doi.org/10.1210/jc.2015-1732
  • Macari, G., Toti, D., Pasquadibisceglie, A., & Polticelli, F. (2020). DockingApp RF: A state-of-the-art novel scoring function for molecular docking in a user-friendly interface to AutoDock Vina. International Journal of Molecular Sciences, 21(24), 9548–9517. https://doi.org/10.3390/ijms21249548
  • Martin, T. M., Harten, P., Venkatapathy, R., Das, S., & Young, D. M. (2008). A hierarchical clustering methodology for the estimation of toxicity. Toxicology Mechanisms and Methods, 18(2–3), 251–266. https://doi.org/10.1080/15376510701857353
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. https://doi.org/10.1021/jm300687e
  • Neelakantan, H., Brightwell, C. R., Graber, T. G., Maroto, R., Wang, H. Y. L., McHardy, S. F., Papaconstantinou, J., Fry, C. S., & Watowich, S. J. (2019). Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. Biochemical Pharmacology, 163(January), 481–492. https://doi.org/10.1016/j.bcp.2019.02.008
  • Neelakantan, H., Vance, V., Wetzel, M. D., Wang, H. Y. L., McHardy, S. F., Finnerty, C. C., Hommel, J. D., & Watowich, S. J. (2018). Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice. Biochemical Pharmacology, 147, 141–152. https://doi.org/10.1016/j.bcp.2017.11.007
  • Pandit, D., So, S. S., & Sun, H. (2006). Enhancing specificity and sensitivity of pharmacophore-based virtual screening by incorporating chemical and shape features - A case study of HIV protease inhibitors. Journal of Chemical Information and Modeling, 46(3), 1236–1244. https://doi.org/10.1021/ci050511a
  • Parsons, R. B., Smith, S. W., Waring, R. H., Williams, A. C., & Ramsden, D. B. (2003). High expression of nicotinamide N-methyltransferase in patients with idiopathic Parkinson’s disease. Neuroscience Letters, 342(1-2), 13–16. https://doi.org/10.1016/S0304-3940(03)00218-0
  • Parsons, R. B., Smith, M. L., Williams, A. C., Waring, R. H., & Ramsden, D. B. (2002). Expression of nicotinamide N-methyltransferase (E.C. 2.1.1.1) in the Parkinsonian brain. Journal of Neuropathology & Experimental Neurology, 61(2), 111–124. https://doi.org/10.1093/jnen/61.2.111
  • Pissios, P. (2017). Nicotinamide N-methyltransferase: More than a vitamin B3 clearance enzyme. Trends in Endocrinology & Metabolism, 28(5), 340–353. https://doi.org/10.1016/j.tem.2017.02.004
  • Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(April), 147–172. https://doi.org/10.1002/wcms.1240
  • Riederer, M., Erwa, W., Zimmermann, R., Frank, S., & Zechner, R. (2009). Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis, 204(2), 412–417. https://doi.org/10.1016/j.atherosclerosis.2008.09.015
  • Rini, J., Szumlanski, C., Guerciolini, R., & Weinshilboum, R. M. (1990). Human liver nicotinamide N-methyltransferase: Ion-pairing radiochemical assay, biochemical properties and individual variation. Clinica Chimica Acta, 186(3), 359–374. https://doi.org/10.1016/0009-8981(90)90322-J
  • Roessler, M., Rollinger, W., Mantovani-Endl, L., Hagmann, M.-L., Palme, S., Berndt, P., Engel, A. M., Pfeffer, M., Karl, J., Bodenmüller, H., Rüschoff, J., Henkel, T., Rohr, G., Rossol, S., Rösch, W., Langen, H., Zolg, W., & Tacke, M. (2006). Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Molecular & Cellular Proteomics, 5(11), 2092–2101. https://doi.org/10.1074/mcp.M600118-MCP200
  • Salek, R. M., Maguire, M. L., Bentley, E., Rubtsov, D. V., Hough, T., Cheeseman, M., Nunez, D., Sweatman, B. C., Haselden, J. N., Cox, R. D., Connor, S. C., Griffin, J. L., Cheeseman, M., Nunez, D., Bc, S., Jn, H., & Rd, C. (2021). A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiological Genomics, 29(2), 99–108. https://doi.org/10.1152/physiolgenomics.00194.2006
  • Sartini, D., Muzzonigro, G., Milanese, G., Pierella, F., Rossi, V., & Emanuelli, M. (2006). Identification of nicotinamide N-methyltransferase as a novel tumor marker for renal clear cell carcinoma. The Journal of Urology, 176(5), 2248–2254. https://doi.org/10.1016/j.juro.2006.07.046
  • Sartini, D., Santarelli, A., Rossi, V., Goteri, G., Rubini, C., Ciavarella, D., Lo Muzio, L., & Emanuelli, M. (2007). Nicotinamide N-methyltransferase upregulation inversely correlates with lymph node metastasis in oral squamous cell carcinoma. Molecular Medicine, 13(7–8), 415–421. https://doi.org/10.2119/2007-00035.Sartini
  • Schreuder, H. A., & Liesum, A. (2021). Co-crystal structure of human nicotinamide Nmethyltransferase (NNMT) with the tricyclic inhibitor (2). https://doi.org/10.2210/pdb7bkg/pdb
  • Seal, A., Yogeeswari, P., Sriram, D., Consortium, O. S. D. D., & Wild, D. J. (2013). Enhanced ranking of PknB inhibitors using data fusion methods. Journal of Cheminformatics, 5(1), 1–11. https://doi.org/10.1186/1758-2946-5-2
  • Seta, R., Mascitti, M., Campagna, R., Sartini, D., Fumarola, S., Santarelli, A., Giuliani, M., Cecati, M., Muzio, L. L., & Emanuelli, M. (2019). Overexpression of nicotinamide N-methyltransferase in HSC-2 OSCC cell line: Effect on apoptosis and cell proliferation. Clinical Oral Investigations, 23(2), 829–838. https://doi.org/10.1007/s00784-018-2497-8
  • Shaker, B., Yu, M. S., Lee, J., Lee, Y., Jung, C., & Na, D. (2020). User guide for the discovery of potential drugs via protein structure prediction and ligand docking simulation. Journal of Microbiology, 58(3), 235–244. https://doi.org/10.1007/s12275-020-9563-z
  • Shin, J. H., Park, C. W., Yoon, G., Hong, S. M., & Choi, K. Y. (2018). NNMT depletion contributes to liver cancer cell survival by enhancing autophagy under nutrient starvation. Oncogenesis, 7(8), 58. https://doi.org/10.1038/s41389-018-0064-4
  • Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
  • Su, M., Yang, Q., Du, Y., Feng, G., Liu, Z., Li, Y., & Wang, R. (2019). Comparative assessment of scoring functions: The CASF-2016 update. Journal of Chemical Information and Modeling, 59(2), 895–913. https://doi.org/10.1021/acs.jcim.8b00545
  • ten Klooster, J. P., Sotiriou, A., Boeren, S., Vaessen, S., Vervoort, J., & Pieters, R. (2018). Type 2 diabetes-related proteins derived from an in vitro model of inflamed fat tissue. Archives of Biochemistry and Biophysics, 644(February), 81–92. https://doi.org/10.1016/j.abb.2018.03.003
  • Tomida, M., Mikami, I., Takeuchi, S., Nishimura, H., & Akiyama, H. (2009). Serum levels of nicotinamide N-methyltransferase in patients with lung cancer. Journal of Cancer Research and Clinical Oncology, 135(9), 1223–1229. https://doi.org/10.1007/s00432-009-0563-y
  • Tropsha, A., & Golbraikh, A. (2007). Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Current Pharmaceutical Design, 13(34), 3494–3504. https://doi.org/10.2174/138161207782794257
  • Trott, O., & Olson, A. J. (2009). Autodock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc.21334
  • Truchon, J. F., & Bayly, C. I. (2007). Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem. Journal of Chemical Information and Modeling, 47(2), 488–508. https://doi.org/10.1021/ci600426e
  • Wang, Y., Zeng, J., Wu, W., Xie, S., Yu, H., Li, G., Zhu, T., Li, F., Lu, J., Wang, G. Y., Xie, X., & Zhang, J. (2019). Nicotinamide N-methyltransferase enhances chemoresistance in breast cancer through SIRT1 protein stabilization. Breast Cancer Research, 21(1), 1–17. https://doi.org/10.1186/s13058-019-1150-z
  • Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169. https://doi.org/10.1021/ci049885e
  • Xu, J., Moatamed, F., Caldwell, J. S., Walker, J. R., Kraiem, Z., Taki, K., Brent, G. A., & Hershman, J. M. (2003). Enhanced expression of nicotinamide N-methyltransferase in human papillary thyroid carcinoma cells. The Journal of Clinical Endocrinology and Metabolism, 88(10), 4990–4996. https://doi.org/10.1210/jc.2002-021843
  • Yan, L., Otterness, D. M., Craddock, T. L., & Weinshilboum, R. M. (1997). Mouse liver nicotinamide N-methyltransferase: CDNA cloning expression, and nucleotide sequence polymorphisms. Biochemical Pharmacology, 54(10), 1139–1149. https://doi.org/10.1016/S0006-2952(97)00325-0
  • Zhao, W., Hevener, K. E., White, S. W., Lee, R. E., & Boyett, J. M. (2009). A statistical framework to evaluate virtual screening. BMC Bioinformatics, 10(1), 1–13. https://doi.org/10.1186/1471-2105-10-225

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.