305
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Exhaustive in silico design and screening of novel antipsychotic compounds with improved pharmacodynamics and blood-brain barrier permeation properties

, &
Pages 14849-14870 | Received 15 Sep 2022, Accepted 18 Feb 2023, Published online: 16 Mar 2023

References

  • Adenot, M., & Lahana, R. (2004). Blood-brain barrier permeation models: Discriminating between potential CNS and Non-CNS drugs including P-glycoprotein substrates. Journal of Chemical Information and Computer Sciences, 44(1), 239–248. https://doi.org/10.1021/ci034205d
  • Aga, V. M., Shad, M. U., Zhu, H., & Salzman, C. (2020). Psychopharmacologic treatment. Handbook of mental health and aging (pp. 315–399). Elsevier. ISBN 9780128001363.
  • Andersen, K., Liljefors, T., Hyttel, J., & Perregaard, J. (1996). Serotonin 5-HT2 receptor, dopamine D2 receptor, and α1 adrenoceptor antagonists. Conformationally flexible analogues of the atypical antipsychotic sertindole. Journal of Medicinal Chemistry, 39(19), 3723–3738. https://doi.org/10.1021/jm960159f
  • Arnt, J., & Skarsfeldt, T. (1998). Do novel antipsychotics have similar pharmacologial characteristics? A review of the evidence. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 18(2), 63–101. https://doi.org/10.1016/S0893-133X(97)00112-7
  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Bai, Y., Chen, G., Yang, H., & Gao, K. (2020). Do Asian and North American patients with bipolar disorder have similar efficacy, tolerability, and safety profile during clinical trials with atypical antipsychotics? Journal of Affective Disorders, 261, 259–270. https://doi.org/10.1016/j.jad.2019.10.012
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Barnes, T. R. E., & Edwards, J. G. (1993). The side-effects of antipsychotic drugs. I. CNS and neuromuscular effects. Antipsychotic drugs and their side-effects (pp. 213–247). Academic Press.
  • Benigni, R., & Bossa, C. (2011). Mechanisms of chemical carcinogenicity and mutagenicity: A review with implications for predictive toxicology. Chemical Reviews, 111(4), 2507–2536. https://doi.org/10.1021/cr100222q
  • Berman, H. M. (2003). The protein data bank. Leadership in science and technology: A reference handbook (Vol 44, pp. 661–667). SAGE Publications, Inc.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Blagg, J. (2010). Structural alerts for toxicity. In D. J. Abraham (Ed.), Burger’s medicinal chemistry and drug discovery (pp. 301–334). John Wiley & Sons, Inc. ISBN 0471266949.
  • Broccatelli, F., Carosati, E., Neri, A., Frosini, M., Goracci, L., Oprea, T. I., & Cruciani, G. (2011). A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields. Journal of Medicinal Chemistry, 54(6), 1740–1751. https://doi.org/10.1021/jm101421d
  • Bruns, R. F., & Watson, I. A. (2012). Rules for identifying potentially reactive or promiscuous compounds. Journal of Medicinal Chemistry, 55(22), 9763–9772. https://doi.org/10.1021/jm301008n
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S. J., Goodsell, D. S., Ghosh, S., Kramer Green, R., Guranovic, V., Henry, J., Hudson, B. P., Lawson, C. L., … Zardecki, C. (2022). RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Science: A Publication of the Protein Society, 31(1), 187–208. https://doi.org/10.1002/pro.4213
  • Burns, M. J. (2001). The pharmacology and toxicology of atypical antipsychotic agents. Journal of Toxicology. Clinical Toxicology, 39(1), 1–14. https://doi.org/10.1081/CLT-100102873
  • Cantù, F., Ciappolino, V., Enrico, P., Moltrasio, C., Delvecchio, G., & Brambilla, P. (2021). Augmentation with atypical antipsychotics for treatment-resistant depression. Journal of Affective Disorders, 280(Pt A), 45–53. https://doi.org/10.1016/j.jad.2020.11.006
  • Chen, L., Li, Y., Zhao, Q., Peng, H., & Hou, T. (2011). ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and Naive Bayesian classification techniques. Molecular Pharmaceutics, 8(3), 889–900. https://doi.org/10.1021/mp100465q
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., Li, Y., Wang, R., & Lai, L. (2007). Computation of octanol-water partition coefficients by guiding an additive model with knowledge. Journal of Chemical Information and Modeling, 47(6), 2140–2148. https://doi.org/10.1021/ci700257y
  • Chien, E. Y. T., Liu, W., Zhao, Q., Katritch, V., Han, G. W., Hanson, M. A., Shi, L., Newman, A. H., Javitch, J. A., Cherezov, V., & Stevens, R. C. (2010). Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science (New York, N.Y.), 330(6007), 1091–1095. https://doi.org/10.1126/science.1197410
  • Clark, D. E. (1999). Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. Journal of Pharmaceutical Sciences, 88(8), 815–821. https://doi.org/10.1021/js980402t
  • Clarke, Z. (2007). Emonapride. In S. J. Enna & D. B. Bylund (Eds.), xPharm: The comprehensive pharmacology reference (pp. 1–3). Elsevier. ISBN 9780080552323.
  • Cobaugh, D. J., Erdman, A. R., Booze, L. L., Scharman, E. J., Christianson, G., Manoguerra, A. S., Caravati, E. M., Chyka, P. A., Woolf, A. D., Nelson, L. S., & Troutman, W. G. (2007). Atypical antipsychotic medication poisoning: An evidence-based consensus guideline for out-of-hospital management. Clinical Toxicology (Philadelphia, PA.), 45(8), 918–942. https://doi.org/10.1080/15563650701665142
  • Cumming, J. G., Davis, A. M., Muresan, S., Haeberlein, M., & Chen, H. (2013). Chemical predictive modelling to improve compound quality. Nature Reviews. Drug Discovery, 12(12), 948–962. https://doi.org/10.1038/nrd4128
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dalpiaz, A., Gessi, S., Borea, P. A., & Gilli, G. (1995). Binding thermodynamics of serotonin to rat-brain 5-HT1A, 5HT2A and 5-HT3 receptors. Life Sciences, 57(12), PL141–146.
  • de Bartolomeis, A., Barone, A., Begni, V., & Riva, M. A. (2022). Present and future antipsychotic drugs: A systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacological Research, 176, 106078. https://doi.org/10.1016/J.PHRS.2022.106078
  • De las Cuevas, C., Sanz, E. J., Ruan, C. J., & de Leon, J. (2021). Clozapine-associated myocarditis in the World Health Organization’s pharmacovigilance database: Focus on reports from various countries. Revista de Psiquiatria y Salud Mental, 15(4), 238-250. https://doi.org/10.1016/j.rpsm.2021.07.004
  • De Leon, J. (2009). Pharmacogenomics: The promise of personalized medicine for CNS disorders. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(1), 159–172. https://doi.org/10.1038/npp.2008.147
  • Deng, C., & Dean, B. (2013). Mapping the pathophysiology of schizophrenia: Interactions between multiple cellular pathways. Frontiers in Cellular Neuroscience, 7, 238. https://doi.org/10.3389/fncel.2013.00238
  • Durcan, M. J., Rigdon, G. C., Norman, M. H., & Morgan, P. F. (1995). Is clozapine selective for the dopamine D4 receptor? Life Sciences, 57(18), PL275–PL283. https://doi.org/10.1016/0024-3205(95)02151-8
  • Edwards, J. G., & Barnes, T. R. E. (1993). The side-effects of antipsychotic drugs. II. Effects on other physiological systems. Antipsychotic drugs and their side-effects (pp. 249–275). Academic Press.
  • Edwards, S. J., & Smith, C. J. (2009). Tolerability of atypical antipsychotics in the treatment of adults with schizophrenia or bipolar disorder: A mixed treatment comparison of randomized controlled trials. Clinical Therapeutics. 31, 1345–1359. https://doi.org/10.1016/j.clinthera.2009.07.004
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Enoch, S. J., Ellison, C. M., Schultz, T. W., & Cronin, M. T. D. (2011). A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity. Critical Reviews in Toxicology, 41(9), 783–802. https://doi.org/10.3109/10408444.2011.598141
  • Ertl, P. (2021). Magic rings: Navigation in the ring chemical space guided by the bioactive rings. Journal of Chemical Information and Modeling, 62(9), 2164–2170. https://doi.org/10.1021/ACS.JCIM.1C00761/SUPPL_FILE/CI1C00761_SI_001.TXT
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Eugene, A. R., Eugene, B., Masiak, M., & Masiak, J. S. (2021). Head-to-head comparison of sedation and somnolence among 37 antipsychotics in schizophrenia, bipolar disorder, major depression, autism spectrum disorders, delirium, and repurposed in COVID-19, infectious diseases, and oncology from the FAERS, 2004–2020. Frontiers in Pharmacology, 12, 295. https://doi.org/10.3389/fphar.2021.621691
  • Freedman, S. B., Patel, S., Marwood, R., Emms, F., Seabrook, G. R., Knowles, M. R., & McAllister, G. (1994). Expression and pharmacological characterization of the human D3 dopamine receptor. The Journal of Pharmacology and Experimental Therapeutics, 268(1), 417–426.
  • Ganapathiraju, M. K., Thahir, M., Handen, A., Sarkar, S. N., Sweet, R. A., Nimgaonkar, V. L., Loscher, C. E., Bauer, E. M., & Chaparala, S. (2016). Schizophrenia interactome with 504 novel protein-protein interactions. npj Schizophrenia. 2, 1–10. https://doi.org/10.1038/npjschz.2016.12
  • Gehlhaar, D. K., Verkhivker, G., Rejto, P. A., Fogel, D. B., Fogel, L. J., & Freer, S. T. (1995). Docking conformationally flexible small molecules into a protein binding site through evolutionary programming. In J. R. McDonnell, R. G. Reynolds, & D. B. Fogel (Eds.), Evolutionary Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming (pp. 615–627).
  • Gleeson, M. P. (2008). Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, 51(4), 817–834. https://doi.org/10.1021/jm701122q
  • Haddad, C., Dib, J. E., Akl, N., Hallit, S., & Obeid, S. (2022). COVID-19 and psychosis, depression, obsession and quality of life in Lebanese patients with schizophrenia: Any changes after 5 months of quarantine? BMC Psychology, 10, 1–10. https://doi.org/10.1186/s40359-022-00750-7
  • Hall, H., Köhler, C., & Gawell, L. (1985). Some in vitro receptor binding properties of [3H]eticlopride, a novel substituted benzamide, selective for dopamine-D2 receptors in the rat brain. European Journal of Pharmacology, 111(2), 191–199. https://doi.org/10.1016/0014-2999(85)90756-3
  • Hall, H., Sällemark, M., & Jerning, E. (1986). Effects of remoxipride and some related new substituted salicylamides on rat brain receptors. Acta Pharmacologica et Toxicologica, 58(1), 61–70. https://doi.org/10.1111/j.1600-0773.1986.tb00071.x
  • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1148/radiology.143.1.7063747
  • Harding, S. D., Armstrong, J. F., Faccenda, E., Southan, C., Alexander, S. P. H., Davenport, A. P., Pawson, A. J., Spedding, M., & Davies, J. A, NC-IUPHAR. (2022). The IUPHAR/BPS guide to PHARMACOLOGY in 2022: Curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Research, 50(D1), D1282–D1294. https://doi.org/10.1093/nar/gkab1010
  • Harel, S., & Radinsky, K. (2018). Prototype-based compound discovery using deep generative models. Molecular Pharmaceutics, 15(10), 4406–4416. https://doi.org/10.1021/acs.molpharmaceut.8b00474
  • Harris, A. (2020). A brief guide to medications for psychosis. A clinical introduction to psychosis (pp. 537–560). Elsevier. ISBN 9780128150122.
  • Heron, P., Spanakis, P., Crosland, S., Johnston, G., Newbronner, E., Wadman, R., Walker, L., Gilbody, S., & Peckham, E. (2022). Loneliness among people with severe mental illness during the COVID-19 pandemic: Results from a linked UK population cohort study. PloS One, 17(1), e0262363. https://doi.org/10.1371/journal.pone.0262363
  • Horvath, D., Lisurek, M., Rupp, B., Kühne, R., Specker, E., von Kries, J., Rognan, D., Andersson, C. D., Almqvist, F., Elofsson, M., Enqvist, P.-A., Gustavsson, A.-L., Remez, N., Mestres, J., Marcou, G., Varnek, A., Hibert, M., Quintana, J., & Frank, R. (2014). Design of a general-purpose European compound screening library for EU-OPENSCREEN. ChemMedChem,.9(10), 2309–2326. https://doi.org/10.1002/cmdc.201402126
  • Hu, Y., Zhang, H., Wang, H., Wang, C., Kung, S., & Li, C. (2022). Adjunctive antidepressants for the acute treatment of bipolar depression: A systematic review and meta-analysis. Psychiatry Research, 311, 114468. https://doi.org/10.1016/j.psychres.2022.114468
  • Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., Decrescenzo, G. A., Devraj, R. V., Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., & Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters, 18(17), 4872–4875. https://doi.org/10.1016/j.bmcl.2008.07.071
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC − A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. https://doi.org/10.1021/ci049714+
  • Jayaraj, J. M., Jothimani, M., Palanisamy, C. P., Pentikäinen, O. T., Pannipara, M., Al-Sehemi, A. G., Muthusamy, K., & Gopinath, K. (2022). Computational study on the inhibitory effect of natural compounds against the SARS-CoV-2 proteins. Bioinorganic Chemistry and Applications, 2022, 1–19. https://doi.org/10.1155/2022/8635054
  • Jeffrey, P., & Summerfield, S. (2010). Assessment of the blood–brain barrier in CNS drug discovery. Neurobiology of Disease, 37(1), 33–37. https://doi.org/10.1016/j.nbd.2009.07.033
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jongsma, H. E., Turner, C., Kirkbride, J. B., & Jones, P. B. (2019). International incidence of psychotic disorders, 2002–17: A systematic review and meta-analysis. The Lancet. Public Health, 4(5), e229–e244. https://doi.org/10.1016/S2468-2667(19)30056-8
  • Kim, D. H., & Stahl, S. M. (2010). Antipsychotic drug development. Current topics in behavioral neurosciences (Vol. 4, pp. 124–139). Springer. ISBN 9783642137167.
  • Kimura, K. T., Asada, H., Inoue, A., Kadji, F. M. N., Im, D., Mori, C., Arakawa, T., Hirata, K., Nomura, Y., Nomura, N., Aoki, J., Iwata, S., & Shimamura, T. (2019). Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nature Structural & Molecular Biology, 26(2), 121–128. https://doi.org/10.1038/s41594-018-0180-z
  • Kondej, M., Stępnicki, P., & Kaczor, A. A. (2018). Multi-target approach for drug discovery against schizophrenia. International Journal of Molecular Sciences. 19, 3105. https://doi.org/10.3390/ijms19103105
  • Kongsamut, S., Kang, J., Chen, X. L., Roehr, J., & Rampe, D. (2002). A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. European Journal of Pharmacology, 450(1), 37–41. https://doi.org/10.1016/S0014-2999(02)02074-5
  • Kroeze, W. K., Hufeisen, S. J., Popadak, B. A., Renock, S. M., Steinberg, S., Ernsberger, P., Jayathilake, K., Meltzer, H. Y., & Roth, B. L. (2003). HL-Histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 28(3), 519–526. https://doi.org/10.1038/sj.npp.1300027
  • Kučerka, N., Tristram-Nagle, S., & Nagle, J. F. (2005). Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. The Journal of Membrane Biology, 208(3), 193–202. https://doi.org/10.1007/s00232-005-7006-8
  • Kunwittaya, S., Nantasenamat, C., Treeratanapiboon, L., Srisarin, A., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2013). Influence of logBB cut-off on the prediction of blood-brain barrier permeability. Biomedical and Applied Technology Journal, 1, 16–34.
  • Lagorce, D., Bouslama, L., Becot, J., Miteva, M. A., & Villoutreix, B. O. (2017). FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics (Oxford, England), 33(22), 3658–3660. https://doi.org/10.1093/bioinformatics/btx491
  • Lagorce, D., Douguet, D., Miteva, M. A., & Villoutreix, B. O. (2017). Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 7, 46277. https://doi.org/10.1038/srep46277
  • Lagorce, D., Sperandio, O., Baell, J. B., Miteva, M. A., & Villoutreix, B. O. (2015). FAF-Drugs3: A web server for compound property calculation and chemical library design. Nucleic Acids Research, 43(W1), W200–W207. https://doi.org/10.1093/nar/gkv353
  • Lahti, R. A., Evans, D. L., Stratman, N. C., & Figur, L. M. (1993). Dopamine D4 versus D2 receptor selectivity of dopamine receptor antagonists: Possible therapeutic implications. European Journal of Pharmacology, 236(3), 483–486. https://doi.org/10.1016/0014-2999(93)90488-4
  • Leo, A. J. (1993). Calculating log Poct from structures. Chemical Reviews, 93(4), 1281–1306. https://doi.org/10.1021/cr00020a001
  • Lesage, A. S., Wouters, R., Van Gompel, P., Heylen, L., Vanhoenacker, P., Haegeman, G., Luyten, W., & Leysen, J. E. (1998). Agonistic properties of alniditan, sumatriptan and dihydroergotamine on human 5-HT(1B) and 5-HT(1D) receptors expressed in various mammalian cell lines. British Journal of Pharmacology, 123(8), 1655–1665. https://doi.org/10.1038/sj.bjp.0701766
  • Leysen, J. E., Gommeren, W., Heylen, L., Luyten, W. H., Van de Weyer, I., Vanhoenacker, P., Haegeman, G., Schotte, A., Van Gompel, P., Wouters, R., & Lesage, A. S. (1996). Alniditan, a new 5-HYdroxytryptamine1D agonist and migraine-abortive agent: Ligand-binding properties of human 5-hydroxytryptamine1Dα, human 5-Hydroxytryptamine1Dβ, and calf 5-hydroxytryptamine1D receptors investigated with [3H]5-hydroxytryptamine and [3H. Molecular Pharmacology, 50(6), 1567–1580.
  • Lipinski, C. A. (2005). Capter 11 filtering in drug discovery. Annual reports in computational chemistry (Vol. 1, pp. 155–168). Elsevier.
  • Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34–41. https://doi.org/10.1016/j.addr.2016.04.029
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997). Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews , 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Liu, R., Li, X., & Lam, K. S. (2017). Combinatorial chemistry in drug discovery. Current Opinion in Chemical Biology, 38, 117–126. https://doi.org/10.1016/j.cbpa.2017.03.017
  • Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: Increasing saturation as an approach to improving clinical success. Journal of Medicinal Chemistry, 52(21), 6752–6756. https://doi.org/10.1021/jm901241e
  • MacKenzie, R. G., VanLeeuwen, D., Pugsley, T. A., Shih, Y. H., Demattos, S., Tang, L., Todd, R. D., & O'Malley, K. L. (1994). Characterization of the human dopamine D3 receptor expressed in transfected cell lines. European Journal of Pharmacology, 266(1), 79–85. https://doi.org/10.1016/0922-4106(94)90212-7
  • McCutcheon, R. A., Reis Marques, T., & Howes, O. D. (2020). Schizophrenia—An overview. JAMA Psychiatry, 77(2), 201–210. https://doi.org/10.1001/jamapsychiatry.2019.3360
  • McGowan, O. O., & Reynolds, G. P. (2020). Functional pharmacogenetics of serotonin receptors in psychiatric drug action. Handbook of behavioral neuroscience (Vol. 31, pp. 941–957). Elsevier.
  • Mierau, J., Schneider, F. J., Ensinger, H. A., Chio, C. L., Lajiness, M. E., & Huff, R. M. (1995). Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. European Journal of Pharmacology, 290(1), 29–36. https://doi.org/10.1016/0922-4106(95)90013-6
  • Millan, M. J., Brocco, M., Gobert, A., Schreiber, R., & Dekeyne, A. (1999). S-16924 [(R)-2-{1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)ethyl]- pyrrolidin-3yl}-1-(4-fluorophenyl)-ethanone], a novel, potential antipsychotic with marked serotonin(1A) agonist properties: III. Anxiolytic actions in comparison with clozapine and halope. Journal of Pharmacology and Experimental Therapeutics. 288, 1002–1014.
  • Millan, M. J., Peglion, J. L., Vian, J., Rivet, J. M., Brocco, M., Gobert, A., Newman- Tancredi, A., Dacquet, C., Bervoets, K., & Girardon, S. (1995). Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297: I. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin. Journal of Pharmacology and Experimental Therapeutics. 275, 885–898.
  • Mok, N. Y., Maxe, S., & Brenk, R. (2013). Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries. Journal of Chemical Information and Modeling, 53(3), 534–544. https://doi.org/10.1021/ci300382f
  • Moons, T., De Roo, M., Claes, S., & Dom, G. (2011). Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics, 12(8), 1193–1211. https://doi.org/10.2217/pgs.11.55
  • Moreno-Küstner, B., Martín, C., & Pastor, L. (2018). Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PloS One, 13(4), e0195687. https://doi.org/10.1371/journal.pone.0195687
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Muehlbacher, M., Spitzer, G. M., Liedl, K. R., & Kornhuber, J. (2011). Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. Journal of Computer-Aided Molecular Design, 25(12), 1095–1106. https://doi.org/10.1007/s10822-011-9478-1
  • Mwesiga, E. K., Nakasujja, N., Muhwezi, W. W., & Musisi, S. (2021). The COVID-19 pandemic has reinforced the need for community mental health-care models in Uganda. The Lancet. Psychiatry, 8(5), 362. https://doi.org/10.1016/S2215-0366(21)00070-5
  • Mwesiga, E. K., Nakasujja, N., Nakku, J., Nanyonga, A., Gumikiriza, J. L., Bangirana, P., Akena, D., & Musisi, S. (2020). One year prevalence of psychotic disorders among first treatment contact patients at the National Psychiatric Referral and Teaching Hospital in Uganda. PloS One, 15(1), e0218843. https://doi.org/10.1371/journal.pone.0218843
  • Oka, T., Kubo, T., Kobayashi, N., Nakai, F., Miyake, Y., Hamamura, T., Honjo, M., Toda, H., Boku, S., Kanazawa, T., et al. (2021). Multiple time measurements of multidimensional psychiatric states from immediately before the COVID-19 pandemic to one year later: A longitudinal online survey of the Japanese population. Translational Psychiatry,.11, 1–8. https://doi.org/10.1038/s41398-021-01696-x
  • Oprea, T. I. (2000). Property distribution of drug-related chemical databases. Journal of Computer-Aided Molecular Design, 14(3), 251–264. https://doi.org/10.1023/A:1008130001697
  • Oprea, T. I., Davis, A. M., Teague, S. J., & Leeson, P. D. (2001). Is there a difference between leads and drugs? A historical perspective. Journal of Chemical Information and Computer Sciences, 41(5), 1308–1315. https://doi.org/10.1021/ci010366a
  • Pence, A. Y., Pries, L.-K., Ferrara, M., Rutten, B. P. F., van Os, J., & Guloksuz, S. (2022). Gender differences in the association between environment and psychosis. Schizophrenia Research, 243, 120–137. https://doi.org/10.1016/j.schres.2022.02.039
  • Pihan, E., Colliandre, L., Guichou, J.-F., & Douguet, D. (2012). e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics (Oxford, England), 28(11), 1540–1541. https://doi.org/10.1093/bioinformatics/bts186
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Platts, J. A., Abraham, M. H., Zhao, Y. H., Hersey, A., Ijaz, L., & Butina, D. (2001). Correlation and prediction of a large blood-brain distribution data set—An LFER study. European Journal of Medicinal Chemistry, 36(9), 719–730. https://doi.org/10.1016/s0223-5234(01)01269-7
  • Polito, N. B., & Fellows, S. E. (2017). Pharmacologic interventions for intractable and persistent hiccups: A systematic review. The Journal of Emergency Medicine, 53(4), 540–549. https://doi.org/10.1016/j.jemermed.2017.05.033
  • Potashman, M. H., & Duggan, M. E. (2009). Covalent modifiers: An orthogonal approach to drug design. Journal of Medicinal Chemistry, 52(5), 1231–1246. https://doi.org/10.1021/jm8008597
  • Przybylak, K. R., Alzahrani, A. R., & Cronin, M. T. D. (2014). How does the quality of phospholipidosis data influence the predictivity of structural alerts? Journal of Chemical Information and Modeling, 54(8), 2224–2232. https://doi.org/10.1021/ci500233k
  • Reynès, C., Host, H., Camproux, A.-C., Laconde, G., Leroux, F., Mazars, A., Deprez, B., Fahraeus, R., Villoutreix, B. O., & Sperandio, O. (2010). Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Computational Biology, 6(3), e1000695. https://doi.org/10.1371/journal.pcbi.1000695
  • Rishton, G. M. (2003). Nonleadlikeness and leadlikeness in biochemical screening. Drug Discovery Today, 8(2), 86–96. https://doi.org/10.1016/S1359644602025722
  • Rishton, G. M., LaBonte, K., Williams, A. J., Kassam, K., & Kolovanov, E. (2006). Computational approaches to the prediction of blood-brain barrier permeability: A comparative analysis of central nervous system drugs versus secretase inhibitors for Alzheimer’s disease. Current Opinion in Drug Discovery & Development, 9, 303–313.
  • Roberts, D. W., & Natsch, A. (2009). High throughput kinetic profiling approach for covalent binding to peptides: Application to skin sensitization potency of Michael acceptor electrophiles. Chemical Research in Toxicology, 22(3), 592–603. https://doi.org/10.1021/tx800431x
  • Roffman, J. L., & Pirl, W. F. (2003). Use of antipsychotic medicationin chemotherapy-induced nausea and vomiting. Expert Review of Neurotherapeutics, 3(1), 77–84. https://doi.org/10.1586/14737175.3.1.77
  • Roper, C., & Tanguay, R. L. (2020). Tox21 and adverse outcome pathways. An introduction to interdisciplinary toxicology (pp. 559–568). Academic Press.
  • Roth, B. L., Sheffler, D. J., & Kroeze, W. K. (2004). Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nature Reviews. Drug Discovery, 3(4), 353–359. https://doi.org/10.1038/nrd1346
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics. 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Saudemont, G., Prod’Homme, C., Da Silva, A., Villet, S., Reich, M., Penel, N., & Gamblin, V. (2020). The use of olanzapine as an antiemetic in palliative medicine: A systematic review of the literature. BMC Palliative Care, 19, 1–11. https://doi.org/10.1186/S12904-020-00559-4/TABLES/2
  • Schotte, A., Janssen, P. F. M., Gommeren, W., Luyten, W., Van Gompel, P., Lesage, A. S., De Loore, K., & Leysen, J. E. (1996). Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology, 124(1-2), 57–73. https://doi.org/10.1007/BF02245606
  • Schüller, A., Schneider, G., & Byvatov, E. (2003). SMILIB: Rapid assembly of combinatorial libraries in SMILES notation. QSAR & Combinatorial Science, 22, 719–721. https://doi.org/10.1002/qsar.200310008
  • Seale, C., Chaplin, R., Lelliott, P., & Quirk, A. (2007). Antipsychotic medication, sedation and mental clouding: An observational study of psychiatric consultations. Social Science & Medicine (1982), 65(4), 698–711. https://doi.org/10.1016/j.socscimed.2007.03.047
  • Seeman, P., Guan, H. ‐C., Van Tol, H. H. M., & Niznik, H. B. (1993). Low density of dopamine D4 receptors in Parkinson’s, schizophrenia, and control brain striata. Synapse (New York, N.Y.), 14(4), 247–253. https://doi.org/10.1002/syn.890140402
  • Sekhar, G. N., Fleckney, A. L., Boyanova, S. T., Rupawala, H., Lo, R., Wang, H., Farag, D. B., Rahman, K. M., Broadstock, M., Reeves, S., & Thomas, S. A. (2019). Region-specific blood-brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer’s disease. Fluids and Barriers of the CNS, 16(1), 38. https://doi.org/10.1186/s12987-019-0158-1
  • Shahid, M., Walker, G. B., Zorn, S. H., & Wong, E. H. F. (2009). Asenapine: A novel psychopharmacologic agent with a unique human receptor signature. Journal of Psychopharmacology (Oxford, England), 23(1), 65–73. https://doi.org/10.1177/0269881107082944
  • Shen, J., Cheng, F., Xu, Y., Li, W., & Tang, Y. (2010). Estimation of ADME properties with substructure pattern recognition. Journal of Chemical Information and Modeling, 50(6), 1034–1041. https://doi.org/10.1021/ci100104j
  • Shityakov, S., & Förster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry : AABC, 7, 23–36. https://doi.org/10.2147/AABC.S63749
  • Shityakov, S., Salvador, E., Pastorin, G., & Förster, C. (2015). Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. International Journal of Nanomedicine, 10, 1703–1713. https://doi.org/10.2147/IJN.S68429
  • Simons, P., Cosgrove, L., Shaughnessy, A. F., & Bursztajn, H. (2017). Antipsychotic augmentation for major depressive disorder: A review of clinical practice guidelines. International Journal of Law and Psychiatry, 55, 64–71. https://doi.org/10.1016/j.ijlp.2017.10.003
  • Singh, N., Guha, R., Giulianotti, M. A., Pinilla, C., Houghten, R. A., & Medina-Franco, J. L. (2009). Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. Journal of Chemical Information and Modeling, 49(4), 1010–1024. https://doi.org/10.1021/ci800426u
  • Sivakumar, K. C., Haixiao, J., Naman, C. B., & Sajeevan, T. P. (2020). Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process. Drug Development Research, 81(6), 685–699. https://doi.org/10.1002/ddr.21673
  • Smith, G. F. (2011). Designing drugs to avoid toxicity. Progress in Medicinal Chemistry, 50, 1–47. https://doi.org/10.1016/B978-0-12-381290-2.00001-X
  • Sokoloff, P., Andrieux, M., Besançon, R., Pilon, C., Martres, M. P., Giros, B., & Schwartz, J. C. (1992). Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: Comparison with D2 receptor. European Journal of Pharmacology, 225(4), 331–337. https://doi.org/10.1016/0922-4106(92)90107-7
  • Sperandio, O., Reynès, C. H., Camproux, A.-C., & Villoutreix, B. O. (2010). Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discovery Today, 15(5–6), 220–229. https://doi.org/10.1016/j.drudis.2009.11.007
  • Stepan, A. F., Walker, D. P., Bauman, J., Price, D. A., Baillie, T. A., Kalgutkar, A. S., & Aleo, M. D. (2011). Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: A perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chemical Research in Toxicology, 24(9), 1345–1410. https://doi.org/10.1021/tx200168d
  • Stroup, T. S., & Gray, N. (2018). Management of common adverse effects of antipsychotic medications. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 17(3), 341–356. https://doi.org/10.1002/wps.20567
  • Subramaniam, M., Abdin, E., Vaingankar, J. A., Sambasivam, R., Zhang, Y. J., Shafie, S., Basu, S., Chan, C. T., Tan, C. S., Verma, S. K., et al. (2021). Lifetime prevalence and correlates of schizophrenia and other psychotic disorders in Singapore. Frontiers in Psychiatry,.12, 249. https://doi.org/10.3389/fpsyt.2021.650674
  • Suenderhauf, C., Hammann, F., & Huwyler, J. (2012). Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules, 17(9), 10429–10445. https://doi.org/10.3390/molecules170910429
  • Tamaian, R., Niculescu, V. C., & Anghel, M. (2010). In silico predictions for improving permeability properties of principal anticancer anthracyclines through structural modification. Bulletin of University of Agricultural Sciences and Veterinary Medicine, 67, 329–336.
  • Tang, L., Todd, R. D., Heller, A., & O’Malley, K. L. (1994). Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. Journal of Pharmacology and Experimental Therapeutics, 268, 495–502.
  • Taquet, M., Luciano, S., Geddes, J. R., & Harrison, P. J. (2021). Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA. The Lancet. Psychiatry, 8(2), 130–140. https://doi.org/10.1016/S2215-0366(20)30462-4
  • Taylor, R. D., MacCoss, M., & Lawson, A. D. G. (2017). Combining molecular scaffolds from FDA approved drugs: Application to drug discovery. Journal of Medicinal Chemistry, 60(5), 1638–1647. https://doi.org/10.1021/acs.jmedchem.6b01367
  • Thanontip, K., Chetsawang, B., & Chumchua, V. (2019). Novel protein-protein interaction network of antipsychotic drugs and cognitive function. Proceedings of the BMEiCON 2019 - 12th Biomedical Engineering International Conference; Institute of Electrical and Electronics Engineers Inc.
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Tice, M. A. B., Hashemi, T., Taylor, L. A., Duffy, R. A., & McQuade, R. D. (1994). Characterization of the binding of SCH 39166 to the five cloned dopamine receptor subtypes. Pharmacology, Biochemistry, and Behavior, 49(3), 567–571. https://doi.org/10.1016/0091-3057(94)90070-1
  • Todeschini, R., & Consonni, V. (2008). In R. Mannhold, H. Kubinyi, H. Timmerman (Eds.), Handbook of Molecular Descriptors. WILEY-VCH Verlag GmbH. ISBN 9783527613106.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanover, K. E., Harvey, S. C., Son, T., Bradley, S. R., Kold, H., Makhay, M., Veinbergs, I., Spalding, T. A., Weiner, D. M., Andersson, C. M., Tolf, B.-R., Brann, M. R., Hacksell, U., & Davis, R. E. (2004). Pharmacological characterization of AC-90179 [2-(4-methoxy-phenyl)-N-(4- methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride]: A selective serotonin 2A receptor inverse agonist. The Journal of Pharmacology and Experimental Therapeutics, 310(3), 943–951. https://doi.org/10.1124/jpet.104.066688
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wacker, D., Wang, S., McCorvy, J. D., Betz, R. M., Venkatakrishnan, A. J., Levit, A., Lansu, K., Schools, Z. L., Che, T., Nichols, D. E., Shoichet, B. K., Dror, R. O., & Roth, B. L. (2017). Crystal structure of an LSD-bound human serotonin receptor. Cell, 168(3), 377–389.e12. https://doi.org/10.1016/j.cell.2016.12.033
  • Wang, S., Che, T., Levit, A., Shoichet, B. K., Wacker, D., & Roth, B. L. (2018). Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555(7695), 269–273. https://doi.org/10.1038/nature25758
  • Wang, Z., Chen, Y., Liang, H., Bender, A., Glen, R. C., & Yan, A. (2011). P-glycoprotein substrate models using support vector machines based on a comprehensive data set. Journal of Chemical Information and Modeling, 51(6), 1447–1456. https://doi.org/10.1021/ci2001583
  • Wang, S.-M., Han, C., Lee, S.-J., Jun, T.-Y., Patkar, A. A., Masand, P. S., & Pae, C.-U. (2016). Second generation antipsychotics in the treatment of major depressive disorder: An update. Chonnam Medical Journal, 52(3), 159–172. https://doi.org/10.4068/CMJ.2016.52.3.159
  • Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., Han, G. W., Liu, W., Huang, X.-P., Vardy, E., McCorvy, J. D., Gao, X., Zhou, X. E., Melcher, K., Zhang, C., Bai, F., Yang, H., Yang, L., Jiang, H., … Xu, H. E. (2013). Structural basis for molecular recognition at serotonin receptors. Science (New York, N.Y.), 340(6132), 610–614. https://doi.org/10.1126/science.1232807
  • Wang, P., & Si, T. (2013). Use of antipsychotics in the treatment of depressive disorders. Shanghai Archives of Psychiatry, 25(3), 134–140. https://doi.org/10.3969/j.issn.1002-0829.2013.03.002
  • Wang, S., Wacker, D., Levit, A., Che, T., Betz, R. M., McCorvy, J. D., Venkatakrishnan, A. J., Huang, X.-P., Dror, R. O., Shoichet, B. K., & Roth, B. L. (2017). D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science (New York, N.Y.), 358(6361), 381–386. https://doi.org/10.1126/science.aan5468
  • Wang, B., Zartaloudi, E., Linden, J. F., & Bramon, E. (2022). Neurophysiology in psychosis: The quest for disease biomarkers. Translational Psychiatry, 12(1), 10. https://doi.org/10.1038/s41398-022-01860-x
  • Weininger, D. (1988). SMILES, a chemical language and information system: 1: Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Science, 28, 31–36. https://doi.org/10.1021/ci00057a005
  • Xu, P., Huang, S., Zhang, H., Mao, C., Zhou, X. E., Cheng, X., Simon, I. A., Shen, D.-D., Yen, H.-Y., Robinson, C. V., Harpsøe, K., Svensson, B., Guo, J., Jiang, H., Gloriam, D. E., Melcher, K., Jiang, Y., Zhang, Y., & Xu, H. E. (2021). Structural insights into the lipid and ligand regulation of serotonin receptors. Nature, 592(7854), 469–473. https://doi.org/10.1038/s41586-021-03376-8
  • Yan, A., Liang, H., Chong, Y., Nie, X., & Yu, C. (2013). In-silico prediction of blood-brain barrier permeability. SAR and QSAR in Environmental Research, 24(1), 61–74. https://doi.org/10.1080/1062936X.2012.729224
  • Yang, F., Ma, Q., Ma, B., Jing, W., Liu, J., Guo, M., Li, J., Wang, Z., & Liu, M. (2021). Dyslipidemia prevalence and trends among adult mental disorder inpatients in Beijing, 2005–2018: A longitudinal observational study. Asian Journal of Psychiatry, 57, 102583. https://doi.org/10.1016/j.ajp.2021.102583
  • Zhang, W., Pei, J., & Lai, L. (2017). Computational multitarget drug design. Journal of Chemical Information and Modeling, 57(3), 403–412. https://doi.org/10.1021/acs.jcim.6b00491

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.