210
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of benzylidene-benzofuranone derivatives as probes for detection of amyloid fibrils in cells

, ORCID Icon, &
Pages 14989-15002 | Received 28 Oct 2022, Accepted 20 Feb 2023, Published online: 03 Mar 2023

References

  • Abbasbeigi, S., Adibi, H., Moradi, S., Ghadami, S. A., & Khodarahmi, R. (2019). Detection/quantification of amyloid aggregation in solution using the novel fluorescent benzofuranone-derivative compounds as amyloid fluorescent probes: synthesis and in vitro characterization. Journal of the Iranian Chemical Society, 16(6), 1225–1237. https://doi.org/10.1007/s13738-019-01599-1
  • Alzheimer’s Association. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367–429.
  • Ayodele, T., Rogaeva, E., Kurup, J. T., Beecham, G., & Reitz, C. (2021). Early-onset Alzheimer’s disease: What is missing in research? Current Neurology and Neuroscience Reports, 21(2), 1–10. https://doi.org/10.1007/s11910-020-01090-y
  • Banks, W. A. (2009). Characteristics of compounds that cross the blood-brain barrier. BMC Neurology, 9(Suppl 1), S3–S5. https://doi.org/10.1186/1471-2377-9-S1-S3
  • Benderdour, M., Bui-Van, T., Dicko, A., & Belleville, F. (1998). In vivo and in vitro effects of boron and boronated compounds. Journal of Trace Elements in Medicine and Biology, 12(1), 2–7. https://doi.org/10.1016/S0946-672X(98)80014-X
  • Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta, 1804(7), 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001
  • Bieschke, J. (2013). Natural compounds may open new routes to treatment of amyloid diseases. Neurotherapeutics, 10(3), 429–439. https://doi.org/10.1007/s13311-013-0192-7
  • Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789
  • Burns, A., & Iliffe, S. (2009). Alzheimer’s disease. BMJ (Clinical Research ed.), 338, b158. https://doi.org/10.1136/bmj.b158
  • Cermakova, P., Eriksdotter, M., Lund, L. H., Winblad, B., Religa, P., & Religa, D. (2015). Heart failure and Alzheimer′ s disease. Journal of Internal Medicine, 277(4), 406–425. https://doi.org/10.1111/joim.12287
  • Christie, N. T., & Costa, M. (1984). In vitro assessment of the toxicity of metal compounds. Biological Trace Element Research, 6(2), 139–158. https://doi.org/10.1007/BF02916931
  • Craft, S., & Watson, G. S. (2004). Insulin and neurodegenerative disease: shared and specific mechanisms. The Lancet. Neurology, 3(3), 169–178. https://doi.org/10.1016/S1474-4422(04)00681-7
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Esteb, J. J., McNulty, L. M., Magers, J., Morgan, P., & Wilson, A. M. (2010). Technology for the organic chemist: Three exploratory modules. Journal of Chemical Education, 87(10), 1074–1077. https://doi.org/10.1021/ed100362d
  • Fantini, J., Chahinian, H., & Yahi, N. (2020). Progress toward Alzheimer’s disease treatment: Leveraging the Achilles’ heel of Aβ oligomers? Protein Science: A Publication of the Protein Society, 29(8), 1748–1759. https://doi.org/10.1002/pro.3906
  • Ghadami, S. A., Hossein-Pour, Z., Khodarahmi, R., Ghobadi, S., & Adibi, H. (2013). Synthesis and in vitro characterization of some benzothiazole-and benzofuranone-derivatives for quantification of fibrillar aggregates and inhibition of amyloid-mediated peroxidase activity. Medicinal Chemistry Research, 22(1), 115–126. https://doi.org/10.1007/s00044-012-0012-3
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Harel, M., Sonoda, L. K., Silman, I., Sussman, J. L., & Rosenberry, T. L. (2008). Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetylcholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site. Journal of the American Chemical Society, 130(25), 7856–7861. https://doi.org/10.1021/ja7109822
  • Hua, Q-x., & Weiss, M. A. (2004). Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. The Journal of Biological Chemistry, 279(20), 21449–21460. https://doi.org/10.1074/jbc.M314141200
  • Jin, L.-W., Claborn, K. A., Kurimoto, M., Geday, M. A., Maezawa, I., Sohraby, F., Estrada, M., Kaminksy, W., & Kahr, B. (2003). Imaging linear birefringence and dichroism in cerebral amyloid pathologies. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15294–15298. https://doi.org/10.1073/pnas.2534647100
  • Khanam, H., Ali, A., Asif, M., & Shamsuzzaman. (2016). Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. European Journal of Medicinal Chemistry, 124, 1121–1141., https://doi.org/10.1016/j.ejmech.2016.08.006
  • Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S. A., Krishna, V., Grover, R. K., Roy, R., & Singh, S. (2005). Mechanism of thioflavin T binding to amyloid fibrils. Journal of Structural Biology, 151(3), 229–238. https://doi.org/10.1016/j.jsb.2005.06.006
  • Krebs, M. R., Bromley, E. H., & Donald, A. M. (2005). The binding of thioflavin-T to amyloid fibrils: localisation and implications. Journal of Structural Biology, 149(1), 30–37. https://doi.org/10.1016/j.jsb.2004.08.002
  • Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.
  • Lee, H.-G., Perry, G., Moreira, P. I., Garrett, M. R., Liu, Q., Zhu, X., Takeda, A., Nunomura, A., & Smith, M. A. (2005). Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends in Molecular Medicine, 11(4), 164–169. https://doi.org/10.1016/j.molmed.2005.02.008
  • LeVine, H. (1995). Thioflavine T interaction with amyloid β-sheet structures. Amyloid, 2(1), 1–6. https://doi.org/10.3109/13506129509031881
  • Li, Y., Gong, H., Sun, Y., Yan, J., Cheng, B., Zhang, X., Huang, J., Yu, M., Guo, Y., Zheng, L., & Huang, K. (2012). Dissecting the role of disulfide bonds on the amyloid formation of insulin. Biochemical and Biophysical Research Communications, 423(2), 373–378. https://doi.org/10.1016/j.bbrc.2012.05.133
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). In vitro models for selection of development candidatesexperimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Li, R., Wu, Z., Wangb, Y., Ding, L., & Wang, Y. (2016). Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnology Reports (Amsterdam, Netherlands), 9, 46–52. https://doi.org/10.1016/j.btre.2016.01.002
  • Lue, L.-F., Guerra, A., & Walker, D. G. (2017). Amyloid beta and tau as Alzheimer’s disease blood biomarkers: promise from new technologies. Neurology and Therapy, 6(S1), 25–36. https://doi.org/10.1007/s40120-017-0074-8
  • Manzini, C. S. S., & Vale, F. A. C. d (2020). Emotional disorders evidenced by family caregivers of older people with Alzheimer’s disease. Dementia & Neuropsychologia, 14(1), 56–61. https://doi.org/10.1590/1980-57642020dn14-010009
  • Mendez, M. F. (2017). Early-onset Alzheimer disease. Neurologic Clinics, 35(2), 263–281. https://doi.org/10.1016/j.ncl.2017.01.005
  • Militello, V., Casarino, C., Emanuele, A., Giostra, A., Pullara, F., & Leone, M. (2004). Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical Chemistry, 107(2), 175–187. https://doi.org/10.1016/j.bpc.2003.09.004
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Goodsell, D. S., Huey, R., & Olson, A. J. (1996). Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. Journal of Computer-Aided Molecular Design, 10(4), 293–304. https://doi.org/10.1007/BF00124499
  • Nilsson, M. R. (2016). Insulin amyloid at injection sites of patients with diabetes. Amyloid: The International Journal of Experimental and Clinical Investigation: The Official Journal of the International Society of Amyloidosis, 23(3), 139–147. https://doi.org/10.1080/13506129.2016.1179183
  • Obici, L., Perfetti, V., Palladini, G., Moratti, R., & Merlini, G. (2005). Clinical aspects of systemic amyloid diseases. Biochimica et Biophysica Acta, 1753(1), 11–22. https://doi.org/10.1016/j.bbapap.2005.08.014
  • O'brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer’s disease. Annual Review of Neuroscience, 34, 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613
  • Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, T., Kusumi, T., & Tanaka, Y. (2006). Yellow flowers generated by expression of the aurone biosynthetic pathway. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 11075–11080. https://doi.org/10.1073/pnas.0604246103
  • Rahman, M. A., Rahman, M. S., Uddin, M. J., Mamum-Or-Rashid, A. N. M., Pang, M.-G., & Rhim, H. (2020). Emerging risk of environmental factors: Insight mechanisms of Alzheimer’s diseases. Environmental Science and Pollution Research International, 27(36), 44659–44672. https://doi.org/10.1007/s11356-020-08243-z
  • Risacher, S. L., Fandos, N., Romero, J., Sherriff, I., Pesini, P., Saykin, A. J., & Apostolova, L. G. (2019). Plasma amyloid beta levels are associated with cerebral amyloid and tau deposition. Alzheimer’s & Dementia (Amsterdam, Netherlands), 11, 510–519. https://doi.org/10.1016/j.dadm.2019.05.007
  • Roy, P., Chisty, M. M. O., & Fattah, H. A. (2021). Alzheimer’s Disease Diagnosis from MRI images using ResNet-152 Neural Network Architecture [Paper presentation]. Paper Presented at the 2021 5th International Conference on Electrical Information and Communication Technology (EICT). https://doi.org/10.1109/EICT54103.2021.9733507
  • Schlein, M. (2017). Insulin formulation characterization—the Thioflavin T assays. The AAPS Journal, 19(2), 397–408. https://doi.org/10.1208/s12248-016-0028-6
  • Sipe, J. D., & Cohen, A. S. (2000). History of the amyloid fibril. Journal of Structural Biology, 130(2–3), 88–98. https://doi.org/10.1006/jsbi.2000.4221
  • Small, G. W. (2000). Early diagnosis of Alzheimer’s disease: update on combining genetic and brain-imaging measures. Dialogues in Clinical Neuroscience, 2(3), 241–246. https://doi.org/10.31887/DCNS.2000.2.3/gsmall
  • Stine, W. B., Jungbauer, L., Yu, C., & LaDu, M. J. (2010). Preparing synthetic Aβ in different aggregation states. In Alzheimer’s disease and frontotemporal dementia (pp. 13–32). Springer.
  • Stsiapura, V. I., Maskevich, A. A., Kuzmitsky, V. A., Turoverov, K. K., & Kuznetsova, I. M. (2007). Computational study of thioflavin T torsional relaxation in the excited state. The Journal of Physical Chemistry. A, 111(22), 4829–4835. https://doi.org/10.1021/jp070590o
  • Stsiapura, V. I., Maskevich, A. A., Kuzmitsky, V. A., Uversky, V. N., Kuznetsova, I. M., & Turoverov, K. K. (2008). Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. The Journal of Physical Chemistry. B, 112(49), 15893–15902. https://doi.org/10.1021/jp805822c
  • Wang, W. (2005). Protein aggregation and its inhibition in biopharmaceutics. International Journal of Pharmaceutics, 289(1–2), 1–30. https://doi.org/10.1016/j.ijpharm.2004.11.014
  • Wolfe, L. S., Calabrese, M. F., Nath, A., Blaho, D. V., Miranker, A. D., & Xiong, Y. (2010). Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 16863–16868. https://doi.org/10.1073/pnas.1002867107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.