207
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interaction of the nanobio-based reagent with sodium fluorescein and lipids via bioinformatics for forensic fingerprint visualisations

, , , , &
Pages 15045-15052 | Received 08 Dec 2022, Accepted 23 Feb 2023, Published online: 07 Mar 2023

References

  • Abdul Wahab, R., Puspanadan, J. K., Mahat, N. A., Azman, A. R., & Ismail, D. (2021). Potassium triiodide enhanced multi-walled carbon nanotubes supported lipase for expediting a greener forensic visualization of wetted fingerprints. Chemical Papers, 75(4), 1401–1412. https://doi.org/10.1007/s11696-020-01370-4
  • Acharya, V., Arutselvan, R., Pati, K., Rout, A. K., Dehury, B., Chauhan, V. B. S., & Nedunchezhiyan, M. (2022). Structural insights into the RNA interaction with Yam bean Mosaic virus (coat protein) from Pachyrhizus erosus using bioinformatics approach. PLoS One, 17(7), e0270534. https://doi.org/10.1371/journal.pone.0270534
  • Alsolmy, E., Abdelwahab, W. M., Martinez, V., Henary, M., & Patonay, G. (2020). Investigation of benzophenoxazine derivatives for the detection of latent fingerprints on porous surfaces. Journal of Photochemistry and Photobiology A: Chemistry, 392, 112416. https://doi.org/10.1016/j.jphotochem.2020.112416
  • Azman, A. R., Mahat, N. A., Abdul Wahab, R., Abdul Razak, F. I., & Hamzah, H. H. (2018). Novel safranin-tinted Candida rugosa lipase nanoconjugates reagent for visualizing latent fingerprints on stainless steel knives immersed in a natural outdoor pond. International Journal of Molecular Sciences, 19(6), 1576. https://doi.org/10.3390/ijms19061576
  • Azman, A. R., Mahat, N. A., Abdul Wahab, R., Ahmad, W. A., Mohamed Huri, M. A., Abdul Hamid, A. A., Adamu, A., & Mat Saat, G. A. (2020). Characterisation and computational analysis of a novel lipase nanobio-based reagent for visualising latent fingerprints on water-immersed glass slides. Process Biochemistry, 96, 102–112. https://doi.org/10.1016/j.procbio.2020.05.033
  • Azman, A. R., Zulkifli, N., Mahat, N. A., Ahmad, W. A., Hamzah, H. H., & Wahab, R. A. (2019). Visualisation of latent fingerprints on non-porous object immersed in stagnant tap water using safranin-tinted Candida rugosa lipase reagent. Malay Journal of Fundamental and Applied Sciences, 15(6), 781–783.
  • Bahaman, A. H., Wahab, R. A., Abdul Hamid, A. A., Abd Halim, K. B., & Kaya, Y. (2021). Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. Journal of Biomolecular Structure & Dynamics, 39(7), 2628–2641. https://doi.org/10.1080/07391102.2020.1751713
  • Bayramoglu, G., Celikbicak, O., Kilic, M., & Yakup Arica, M. (2022). Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis. Food Chemistry, 366, 130699. https://doi.org/10.1016/j.foodchem.2021.130699
  • Becker, R. F., Nordby, S. H., & Jon, J. (2013). Underwater forensic investigation. CRC Press.
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. WH Freeman.
  • Cavalcanti, E. D., Aguieiras, É. C., da Silva, P. R., Duarte, J. G., Cipolatti, E. P., Fernandez-Lafuente, R., da Silva, J. A. C., & Freire, D. M. (2018). Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel, 215, 705–713. https://doi.org/10.1016/j.fuel.2017.11.119
  • Chakraborty, H. J., Rout, A. K., Behera, B. K., Parhi, J., Parida, P. K., & Das, B. K. (2018). Insights into the aquaporin 4 of zebrafish (Danio rerio) through evolutionary analysis, molecular modeling and structural dynamics. Gene Reports, 11, 101–109. https://doi.org/10.1016/j.genrep.2018.03.001
  • Delgado-García, M., Rodríguez, J. A., Mateos-Díaz, J. C., Aguilar, C. N., Rodríguez-Herrera, R., & Camacho-Ruíz, R. M. (2018). Halophilic archaeal lipases and esterases: Activity, stability, and food applications. In M. Kuddus (Ed.), Enzymes in Food Technology: Improvements and Innovations (pp. 243–262). Springer Nature Singapore.
  • Eldridge, S. (2017). Every contact leaves a trace. In Investigating trace evidence (pp. 9–18). Retrieved from https://books.google.com.my/books?id=IA9iDwAAQBAJ
  • Girod, A., & Weyermann, C. (2014). Lipid composition of fingermark residue and donor classification using GC/MS. Forensic Science International, 238, 68–82. https://doi.org/10.1016/j.forsciint.2014.02.020
  • Goguet, M., Narwani, T. J., Petermann, R., Jallu, V., & de Brevern, A. G. (2017). In silico analysis of Glanzmann variants of Calf-1 domain of α IIb β 3 integrin revealed dynamic allosteric effect. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-08408-w
  • Gray, T., & Matthews, B. (1984). Intrahelical hydrogen bonding of serine, threonine and cysteine residues within α-helices and its relevance to membrane-bound proteins. Journal of Molecular Biology, 175(1), 75–81. https://doi.org/10.1016/0022-2836(84)90446-7
  • Harris, H. A., & Lee, H. C. (2019). Fingerprints and other personal identification patterns. In Introduction to forensic science and criminalistics (2nd ed., pp. 117–142). CRC Press.
  • International Agency for Research on Cancer. (2010). IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer.
  • Jityuti, B., Kuno, M., Liwporncharoenvong, T., & Buranaprapuk, A. (2020). Selective protein photocleavage by fluorescein derivatives. Journal of Photochemistry and Photobiology. B, Biology, 212, 112027. https://doi.org/10.1016/j.jphotobiol.2020.112027
  • Joshi, T., Sharma, P., Joshi, T., Pundir, H., Mathpal, S., & Chandra, S. (2021). Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Molecular Diversity, 25(3), 1665–1677.
  • Liu, Y.-Y., & Harbison, S. (2018). A review of bioinformatic methods for forensic DNA analyses. Forensic Science International. Genetics, 33, 117–128. https://doi.org/10.1016/j.fsigen.2017.12.005
  • Ma, M., Guan, P., Mukerabigwi, J. F., Yan, F., Chen, D., Sun, Y., Huang, X., & Cao, Y. (2021). Nanodiamond conjugated fluorescein through ethylenediamine linker for cellular biomarking. Diamond and Related Materials, 118, 108546. https://doi.org/10.1016/j.diamond.2021.108546
  • Merck. (2021). Safety Data Sheet (C.I. 45350) 103887 Fluorescein sodium- indicator Reagent. In Darmstadt. Merck.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Motz, R. T., Tanksley, P., Liu, H., Mersha, T. B., & Barnes, J. C. (2019). Every contact leaves a trace: Contact with the criminal justice system, life outcomes, and the intersection with genetics. Current Opinion in Psychology, 27, 82–87. https://doi.org/10.1016/j.copsyc.2018.09.008
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Oyewusi, H. A., Huyop, F., & Wahab, R. A. (2020). Molecular docking and molecular dynamics simulation of Bacillus thuringiensis dehalogenase against haloacids, haloacetates and chlorpyrifos. Journal of Biomolecular Structure and Dynamics, 40(5), 1979–1994.
  • Ozyilmaz, E., Caglar, O., Sargin, I., & Arslan, G. (2022). Synergistic role of carbon quantum dots in the activity and stability of Candida rugosa lipase encapsulated within metal–organic frameworks (ZIF-8). Materials Today Communications, 30, 103066. https://doi.org/10.1016/j.mtcomm.2021.103066
  • Ramharack, P., & Soliman, M. E. S. (2018). Bioinformatics-based tools in drug discovery: The cartography from single gene to integrative biological networks. Drug Discovery Today, 23(9), 1658–1665. https://doi.org/10.1016/j.drudis.2018.05.041
  • Raschka, S., Wolf, A. J., Bemister-Buffington, J., & Kuhn, L. A. (2018). Protein–ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes. Journal of Computer-Aided Molecular Design, 32(4), 511–528. https://doi.org/10.1007/s10822-018-0105-2
  • Rout, A. K., Acharya, V., Maharana, D., Dehury, B., Udgata, S. R., Jena, R., Behera, B., Parida, P. K., & Behera, B. K. (2021). Insights into structure and dynamics of extracellular domain of Toll-like receptor 5 in Cirrhinus mrigala (mrigala): A molecular dynamics simulation approach. PLoS One, 16(1), e0245358. https://doi.org/10.1371/journal.pone.0245358
  • Said, N. F. N., Abd. Rahman, N. S., Othman, P. J., Zakaria, Y., & Nik Hassan, N. F. (2021). Recovery of latent fingermarks on metal part of motorcycle submerged in different aquatic environments. Sains Malaysiana, 50(8), 2343–2354. https://doi.org/10.17576/jsm-2021-5008-17
  • Sampath, C., Belur, P. D., & Iyyasami, R. (2018). Enhancement of n-3 polyunsaturated fatty acid glycerides in Sardine oil by a bioimprinted cross-linked Candida rugosa lipase. Enzyme and Microbial Technology, 110, 20–29. https://doi.org/10.1016/j.enzmictec.2017.12.003
  • Schrödinger, L., & DeLano, W. (2020). Pymol. The PyMOL Molecular Graphics System, Version, 2.
  • Sirchie. (2020). Safety Data Sheet SPR400UV small particle reagent- fluorescent. Sirchie.
  • Su, L., Wu, R., Chen, X., Hou, W., & Ruan, B. H. (2018). FITC-labeled d-glucose analog is suitable as a probe for detecting insulin-dependent glucose uptake. Bioorganic & Medicinal Chemistry Letters, 28(22), 3560–3563. https://doi.org/10.1016/j.bmcl.2018.09.027
  • Subroto, E., Indiarto, R., Pangawikan, A., Huda, S., & Yarlina, V. (2020). Characteristics, immobilization, and application of Candida rugosa lipase. Food Research, 4(5), 1391–1401. https://doi.org/10.26656/fr.2017.4(5).060
  • Sufyan, M., Ali Ashfaq, U., Ahmad, S., Noor, F., Hamzah Saleem, M., Farhan Aslam, M., El-Serehy, H. A., & Aslam, S. (2021). Identifying key genes and screening therapeutic agents associated with diabetes mellitus and HCV-related hepatocellular carcinoma by bioinformatics analysis. Saudi Journal of Biological Sciences, 28(10), 5518–5525. https://doi.org/10.1016/j.sjbs.2021.07.068
  • Ting, C. W., Mahat, N. A., Azman, A. R., Muda, N. W., & Anuar, N. (2021). Performance of the nanobio-based reagent for visualising wet fingerprints exposed to different levels of water salinity. Journal of Clinical and Health Sciences, 6(1(Special)), 32–43. https://doi.org/10.24191/jchs.v6i1(Special).13169
  • Tran, Q.-H., Nguyen, Q.-T., Vo, N.-Q.-H., Mai, T. T., Tran, T.-T.-N., Tran, T.-D., Le, M.-T., Trinh, D.-T T., & Thai, K.-M. (2022). Structure-based 3D-Pharmacophore modeling to discover novel interleukin 6 inhibitors: An in silico screening, molecular dynamics simulations and binding free energy calculations. PLoS One, 17(4), e0266632. https://doi.org/10.1371/journal.pone.0266632
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Tsang, M.-W., Leung, Y.-C., & Wong, K.-Y. (2021). Rational design and construction of active-site labeled enzymes. In Structural genomics (pp. 13–22). Springer.
  • Win, K. N., Li, K., Chen, J., Viger, P. F., & Li, K. (2020). Fingerprint classification and identification algorithms for criminal investigation: A survey. Future Generation Computer Systems, 110, 758–771. https://doi.org/10.1016/j.future.2019.10.019
  • Yuan, C., Li, M., Wang, M., Cao, H., & Lin, T. (2021). A critical review of fundamentals and applications of electrochemical development and imaging of latent fingerprints. Electrochimica Acta, 390, 138798. https://doi.org/10.1016/j.electacta.2021.138798
  • Zhu, B., Ren, G., Tang, M., Chai, F., Qu, F., Wang, C., & Su, Z. (2018). Fluorescent silicon nanoparticles for sensing Hg2+ and Ag+ as well visualization of latent fingerprints. Dyes and Pigments, 149, 686–695. https://doi.org/10.1016/j.dyepig.2017.11.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.