303
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures

, &
Pages 14822-14831 | Received 04 Jan 2023, Accepted 22 Feb 2023, Published online: 08 Mar 2023

References

  • Bathe, M., & Rothemund, P. W. K. (2017). DNA nanotechnology: A foundation for programmable nanoscale materials. MRS Bulletin, 42(12), 882–888. https://doi.org/10.1557/mrs.2017.279
  • Castro, C. E., Kilchherr, F., Kim, D.-N., Shiao, E. L., Wauer, T., Wortmann, P., Bathe, M., & Dietz, H. (2011). A primer to scaffolded DNA origami. Nature Methods, 8(3), 221–229. https://doi.org/10.1038/nmeth.1570
  • Chen, H., Weng, T.-W., Riccitelli, M. M., Cui, Y., Irudayaraj, J., & Choi, J. H. (2014). Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. Journal of the American Chemical Society, 136(19), 6995–7005. https://doi.org/10.1021/ja500612d
  • Chiriboga, M., Green, C., Hastman, D., Mathur, D., Wei, Q., Díaz, S. A., Medintz, I. L., & Veneziano, R. (2022). Rapid DNA origami nanostructure detection and classification using theYOLOv5 deep convolutional neural network. Scientific Reports, 12, 1–13.
  • Choi, J. B., & Lakes, R. S. (1996). Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. International Journal of Fracture, 80(1), 73–83. https://doi.org/10.1007/BF00036481
  • Dans, P. P., Ivani, I., Hospital, A., Portella, G., Gonz ́alez, C., & Orozco, M. (2017). How accurate are accurate force-fields for B-DNA? Nucleic Acids Research, 45(7), 4217–4230.
  • Dastorani, S., Ghasemi, R. H., & Soheilifard, R. (2021). A study on the bending stiffness of a new DNA origami nano-joint. Molecular Biotechnology, 63(11), 1057–1067. https://doi.org/10.1007/s12033-021-00367-y
  • Dastorani, S., Mogheiseh, M., Ghasemi, R. H., & Soheilifard, R. (2020). Modeling and structural investigation of a new DNA origami based flexible bio-nano joint. Molecular Simulation, 46(13), 994–1003. https://doi.org/10.1080/08927022.2020.1797019
  • Dong, Y., Jin, Z., Zhang, X., Tang, Y., Tian, Y., Zhu, J.-J., & Min, Q. (2022). A six-plex switchable DNA origami cipher disk for tandem-in-time cryptography. Chemical Communications, 58(41), 6124–6127. https://doi.org/10.1039/D2CC01349E
  • Douglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih, W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with CaDNAno. Nucleic Acids Research, 37(15), 5001–5006. https://doi.org/10.1093/nar/gkp436
  • Ebrahimi, M. S., Hashemi, R., & Etemadi, E. (2022). In-plane energy absorption characteristics and mechanical properties of 3D printed novel hybrid cellular structures. Journal of Materials Research and Technology, 20, 3616–3632.
  • Etemadi, E., & Safikhani Nasim, M. (2017). Analysis of effective parameters of auxetic composite structure made with multilayer orthogonal reinforcement by finite element method. Modares Mechanical Engineering, 17(4), 247–254.
  • Etemadi, E., Zamani, A. M., & Safikhan Nasim, M. (2021). Experimental and numerical analysis of effective geometrical parameters for energy absorbing of the structures with negative Poisson’s ratio made from aluminium alloy 1100. Solid and Fluid Mechanics, 11, 311–324.
  • Goodman, R. P., Schaap, I. A., Tardin, C. F., Erben, C. M., Berry, R. M., Schmidt, C. F., & Turberfield, A. J. (2005). Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science (New York, N.Y.), 310(5754), 1661–1665. https://doi.org/10.1126/science.1120367
  • Hanke, M., Dornbusch, D., Hadlich, C., Rossberg, A., Hansen, N., Grundmeier, G., Tsushima, S., Keller, A., & Fahmy, K. (2022). Anion-specific structure and stability of guanidinium-bound DNA origami. Computational and Structural Biotechnology Journal, 20, 2611–2623. https://doi.org/10.1016/j.csbj.2022.05.037
  • Hogan, M., & Austin, R. H. (1987). Importance of DNA stiffness in protein–DNA binding specificity. Nature, 329(6136), 263–266. https://doi.org/10.1038/329263a0
  • Ingrole, A., Hao, A., & Liang, R. (2017). Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Materials & Design, 117, 72–83. https://doi.org/10.1016/j.matdes.2016.12.067
  • Jiang, L., Gu, B., & Hu, H. (2016). Auxetic composite made with multilayer orthogonal structural reinforcement. Composite Structures, 135, 23–29. https://doi.org/10.1016/j.compstruct.2015.08.110
  • Jun, H., Zhang, F., Shepherd, T., Ratanalert, S., Qi, X., Yan, H., & Bathe, M. (2019). Autonomously designed free-form 2D DNA origami. Science Advances, 5(1), eaav0655. https://doi.org/10.1126/sciadv.aav0655
  • Kahn, J. S., Xiong, Y., Huang, J., & Gang, O. (2022). Cascaded enzyme reactions over a three-dimensional, wireframe DNA origami scaffold. JACS Au, 2(2), 357–366. https://doi.org/10.1021/jacsau.1c00387
  • Kauert, D. J., Kurth, T., Liedl, T., & Seidel, R. (2011). Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Letters, 11(12), 5558–5563. https://doi.org/10.1021/nl203503s
  • Kaur, G., Biswas, R., Haldar, K. K., & Sen, T. (2022). DNA origami-templated bimetallic core − shell nanostructures for enhanced oxygen evolution reaction. The Journal of Physical Chemistry C, 126(16), 6915–6924. https://doi.org/10.1021/acs.jpcc.2c00007
  • Khadem-Reza, L., Etemadi, E., Abbaslou, M., & Hu2, H. (2022). Design of novel 3D auxetic structures based on S-shaped unit-cells. Smart Matrial and Structures, 31(7), 1–24.
  • Khosravi, R., Ghasemi, R. H., & Soheilifard, R. (2020). Design and simulation of a DNA origami nanopore for large cargoes. Molecular Biotechnology, 62(9), 423–432. https://doi.org/10.1007/s12033-020-00261-z
  • Kim, D.-N., Kilchherr, F., Dietz, H., & Bathe, M. (2012). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Research, 40(7), 2862–2868. https://doi.org/10.1093/nar/gkr1173
  • Lakes, R. S. (1987). Foam structures with a negative Poisson’s ratio. Science, 235(4792), 1038–1040. https://doi.org/10.1126/science.235.4792.1038
  • Lee, J. H., Singer, J. P., & Thomas, E. L. (2012). Micro-/nanostructured mechanical metamaterials. Advanced Materials (Deerfield Beach, Fla.), 24(36), 4782–4810. https://doi.org/10.1002/adma.201201644
  • Lei, Y., Mei, Z., Chen, Y., Deng, N., & Li, Y. (2022). Facile purification and concentration of DNA origami structures by ethanol precipitation. ChemNanoMat. 8(7), 1-4. https://doi.org/10.1002/cnma.202200161
  • Li, R., Chen, H., & Hyun Choi, J. (2021). Auxetic two-dimensional nanostructures from DNA. Angewandte Chemie, 133(13), 7241–7249. https://doi.org/10.1002/ange.202014729
  • McIntosh, D. B., Duggan, G., Gouil, Q., & Saleh, O. A. (2014). Sequence-dependent elasticity and electrostatics of single-stranded DNA: Signatures of base-stacking. Biophysical Journal, 106(3), 659–666. https://doi.org/10.1016/j.bpj.2013.12.018
  • Menon, H. G., Dutta, S., Krishanan, A., Hariprasad M. P., & Shankar, B. (2022). Proposed auxetic cluster designs for lightweight structural beams with improved load bearing capacity. Engineering Structures, 260: 114241.
  • Minhas, V., Sun, T., Mirzoev, A., Korolev, N., Lyubartsev, A. P., & Nordenskiöld, L. (2020). Modeling DNA flexibility: Comparison of force fields from atomistic to multiscale levels. The Journal of Physical Chemistry. B, 124(1), 38–49. https://doi.org/10.1021/acs.jpcb.9b09106
  • Mogheiseh, M., & Ghasemi, R. H. (2022). An analysis of the capturing and passing ability of a DNA origami nanocarrier with the aid of molecular dynamics simulation. Molecular Biotechnology. https://doi.org/10.1007/s12033-022-00636-4
  • Mogheiseh, M., Ghasemi, R. H., & Soheilifard, R. (2020). The effect of crossovers on the stability of DNA origami type nanocarriers. Multidiscipline Modeling in Materials and Structures, 17(2), 426–436. https://doi.org/10.1108/MMMS-05-2020-0094
  • Nečemer, B., Vuherer, T., Glodež, S., & Kramberger, J. (2022). Fatigue behaviour of re-entrant auxetic structures made of the aluminium alloy AA7075-T651. Thin-Walled Structures, 180, 109917. https://doi.org/10.1016/j.tws.2022.109917
  • Ni, H., Fan, X., Zhou, F., Guo, G., Young Lee, J., Seeman, N. C., Kim, D.-N., Yao, N., Chaikin, P. M., & Han, Y. (2022). Direct visualization of floppy two-dimensional DNA origami using cryogenic electron microscopy. iScience, 25(6), 104373. https://doi.org/10.1016/j.isci.2022.104373
  • Ochmann, S. E., Schröder, T., Schulz, C. M., & Tinnefeld, P. (2022). Quantitative single-molecule measurements of membrane charges with DNA origami sensors. Analytical Chemistry, 94(5), 2633–2640. https://doi.org/10.1021/acs.analchem.1c05092
  • Pensa, E., Bogawat, Y., Simmel, F. C., & Santiago, I. (2022). Single DNA origami detection by nanoimpact electrochemistry. ChemElectroChem, 9(4), 1-5. https://doi.org/10.1002/celc.202101696
  • Reddy, S. Y., Leclerc, F., & Karplus, M. (2003). DNA polymorphism: A comparison of force fields for nucleic acids. Biophysical Journal, 84(3), 1421–1449. V https://doi.org/10.1016/S0006-3495(03)74957-1
  • Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082), 297–302. https://doi.org/10.1038/nature04586
  • Safikhani Nasim, M., & Etemadi, E. (2018). Three dimensional modeling of warp and woof periodic auxetic cellular structure. International Journal of Mechanical Sciences, 136, 475–481. https://doi.org/10.1016/j.ijmecsci.2018.01.002
  • Scarpa, F., & Tomlin, P. J. (2000). On the transverse shear modulus of negative Poisson’s ratio honeycomb structures. Fatigue & Fracture of Engineering Materials and Structures, 23(8), 717–720. https://doi.org/10.1046/j.1460-2695.2000.00278.x
  • Shi, Z., Castro, C. E., & Arya, G. (2017). Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations. ACS Nano, 11(5), 4617–4630. https://doi.org/10.1021/acsnano.7b00242
  • Shoja-Senobar, M., Etemadi, E., & Lezgy-Nazargah, M. (2021). An analytical investigation of elastic–plastic behaviors of 3D warp and woof auxetic structures. International Journal of Mechanics and Materials in Design, 17(3), 545–561. https://doi.org/10.1007/s10999-021-09546-w
  • Simmel, S. S., Nickels, P. C., & Liedl, T. (2014). Wireframe and tensegrity DNA nanostructures. Accounts of Chemical Research, 47(6), 1691–1699. https://doi.org/10.1021/ar400319n
  • Snodin, B. E. K., Randisi, F., Mosayebi, M., Šulc, P., Schreck, J. S., Romano, F., Ouldridge, T. E., Tsukanov, R., Nir, E., Louis, A. A., & Doye, J. P. K. (2015). Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. The Journal of Chemical Physics, 142(23), 234901. https://doi.org/10.1063/1.4921957
  • Subramani, P., Rana, S., Oliveira, D. V., Fangueiro, R., & Xavier, J. (2014). Development of novel auxetic structures based on braided composites. Materials & Design, 61, 286–295. https://doi.org/10.1016/j.matdes.2014.04.067
  • Teng, X. C., Ren, X., Zhang, Y., Jiang, W., Pan, Y., Zhang, X. G., Zhang, X. Y., & Xie, Y. M. (2022). A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption. International Journal of Mechanical Sciences, 229, 107524. https://doi.org/10.1016/j.ijmecsci.2022.107524
  • Udomprasert, A., Wootthichairangsan, C., Duangrat, R., Chaithongyot, S., Zhang, Y., Nixon, R., Liu, W., Wang, R., Ponglikitmongkol, M., & Kangsamaksin, T. (2022). Enhanced functional properties of three DNA origami nanostructures as doxorubicin carriers to breast cancer cells. ACS Applied Bio Materials, 5(5), 2262–2272. https://doi.org/10.1021/acsabm.2c00114
  • Wagenbauer, K. F., Sigl, C., & Dietz, H. (2017). Gigadalton-scale shape-programmable DNA assemblies. Nature, 552(7683), 78–83. https://doi.org/10.1038/nature24651
  • Wamhoff, E.-C., Romanov, A., Huang, H., Read, B. J., Ginsburg, E., Knappe, G. A., Min Kim, H., Farrell, N. P., Irvine, D. J., & Bathe, M. (2022). Controlling nuclease degradation of wireframe DNA origami with minor groove binders. ACS Nano, 16(6), 8954–8966. https://doi.org/10.1021/acsnano.1c11575
  • Wang, C.-H., Chen, X.-Q., Su, Y.-Y., Wang, H., & Li, D. (2022). Precise regulating T cell activation signaling with spatial controllable positioning of receptors on DNA origami. Chinese Journal of Analytical Chemistry, 50(6), 100091. https://doi.org/10.1016/j.cjac.2022.100091
  • Wang, T., Schiffels, D., Martinez Cuesta, S., Kuchnir Fygenson, D., & Seeman, N. C. (2012). Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. Journal of the American Chemical Society, 134(3), 1606–1616. https://doi.org/10.1021/ja207976q
  • Wang, X., Jun, H., & Bathe, M. (2022). Programming 2D supramolecular assemblies with wireframe DNA origami. Journal of the American Chemical Society, 144(10), 4403–4409. https://doi.org/10.1021/jacs.1c11332
  • Weizman, E. R., Azaria, A. G., & Garini, Y. (2022). Conformation of ring single-stranded DNA measured by DNA origami structures. Biophysical Journal, 121(11), 2127–2134. https://doi.org/10.1016/j.bpj.2022.04.033
  • Yu, L., Yan, Q., & Ruzsinszky, A. (2017). Negative Poisson’s ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides. Nature Communications, 8(1), 15224. https://doi.org/10.1038/ncomms15224
  • Zhang, X. Y., Ren, X., Wang, X. Y., Zhang, Y., & Xie, Y. M. (2021). A novel combined auxetic tubular structure with enhanced tunable stiffness. Composites Part B: Engineering, 226, 109303. https://doi.org/10.1016/j.compositesb.2021.109303

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.