233
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the antibacterial mechanism of Ampelopsis cantoniensis extracts against methicillin-resistant Staphylococcus aureus via in vitro and in silico analysis

, ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 14080-14091 | Received 19 Oct 2022, Accepted 31 Jan 2023, Published online: 08 Mar 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Alhadrami, H. A., Hamed, A. A., Hassan, H. M., Belbahri, L., Rateb, M. E., & Sayed, A. M. (2020). Flavonoids as potential anti-MRSA agents through modulation of PBP2a: A computational and experimental study. Antibiotics (Basel), 9(9), 562. https://doi.org/10.3390/antibiotics9090562
  • Amin, S. A., Bhargava, S., Adhikari, N., Gayen, S., & Jha, T. (2018). Exploring pyrazolo[3,4-d]pyrimidine phosphodiesterase 1 (PDE1) inhibitors: A predictive approach combining comparative validated multiple molecular modelling techniques. Journal of Biomolecular Structure & Dynamics, 36(3), 590–608. https://doi.org/10.1080/07391102.2017.1288659
  • Amin, S. A., Adhikari, N., Gayen, S., & Jha, T. (2018). Integrin antagonists: A special emphasis on structural requirements of N-benzoyl-L-biphenylalanines as α4β7 and α4β1 antagonists. Current Signal Transduction Therapy, 13(2), 105–118. https://doi.org/10.2174/1574888X13666180301123106
  • Bai, Z., Chen, M., Lin, Q., Ye, Y., Fan, H., Wen, K., Zeng, J., Huang, D., Mo, W., Lei, Y., & Liao, Z. (2021). Identification of methicillin-resistant staphylococcus aureus from methicillin-sensitive staphylococcus aureus and molecular characterization in Quanzhou, China. Frontiers in Cell and Developmental Biology, 9, 629681. https://doi.org/10.3389/fcell.2021.629681
  • Chen, Z., Wang, M., Cai, P., & Chen, X. (1997). Determination of ampelopsin and myricetin in Ampelopsis cantoniensis. Journal of Chinese Medicinal Materials, 20(1), 23–25.
  • CLSI (2020). Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
  • Csizmadia, P. (1999). MarvinSketch and MarvinView: Molecule applets for the world wide web. Proceedings of the 3rd International Electronic Conference on Synthetic Organic Chemistry 1-30. Basel, Switzerland: MDPI . https://doi.org/10.3390/ecsoc-3-01775
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Dalcin, A. J. F., Santos, C. G., Gündel, S. S., Roggia, I., Raffin, R. P., Ourique, A. F., Santos, R. C. V., & Gomes, P. (2017). Antibiofilm effect of dihydromyricetin-loaded nanocapsules on urinary catheter infected by Pseudomonas aeruginosa. Colloids and Surfaces B, Biointerfaces, 156, 282–291. https://doi.org/10.1016/j.colsurfb.2017.05.029
  • Duch, W., Swaminathan, K., & Meller, J. (2007). Artificial intelligence approaches for rational drug design and discovery. Current Pharmaceutical Design, 13(14), 1497–1508. https://doi.org/10.2174/138161207780765954
  • Fernandes, C. J., Fernandes, L. A., & Collignon, P., Australian Group on Antimicrobial Resistance. (2005). Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus. The Journal of Antimicrobial Chemotherapy, 55(4), 506–510. https://doi.org/10.1093/jac/dki052
  • Ferreira, O., & Pinho, S. P. (2012). Solubility of flavonoids in pure solvents. Industrial & Engineering Chemistry Research, 51(18), 6586–6590. https://doi.org/10.1021/ie300211e
  • Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life, 66(8), 572–577. https://doi.org/10.1002/iub.1289
  • Galia, L., Ligozzi, M., Bertoncelli, A., & Mazzariol, A. (2019). Real-time PCR assay for detection of Staphylococcus aureus, Panton-Valentine Leucocidin and Methicillin Resistance directly from clinical samples. AIMS Microbiology, 5(2), 138–146. https://doi.org/10.3934/microbiol.2019.2.138
  • Gao, Q., Ma, R., Chen, L., Shi, S., Cai, P., Zhang, S., & Xiang, H. (2017). Antioxidant profiling of vine tea (Ampelopsis grossedentata): Off-line coupling heart-cutting HSCCC with HPLC-DAD-QTOF-MS/MS. Food Chemistry, 225, 55–61. https://doi.org/10.1016/j.foodchem.2016.11.122
  • Hu, H., Luo, F., Wang, M., Fu, Z., & Shu, X. (2020). New method for extracting and purifying dihydromyricetin from Ampelopsis grossedentata. ACS Omega, 5(23), 13955–13962. https://doi.org/10.1021/acsomega.0c01222
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • John, J., Jr. (2020). The treatment of resistant staphylococcal infections. F1000Res, 9, F1000. Rev-150. https://doi.org/10.12688/f1000research.17718.1
  • Johnson, E. J., Zemanick, E. T., Accurso, F. J., Wagner, B. D., Robertson, C. E., & Harris, J. K. (2016). Molecular identification of Staphylococcus aureus in airway samples from children with cystic fibrosis. PLoS One, 11(1), e0147643. https://doi.org/10.1371/journal.pone.0147643
  • Justino, G. C., & Vieira, A. J. (2010). Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution – A comparison and validation of semi-empirical methods. Journal of Molecular Modeling, 16(5), 863–876. https://doi.org/10.1007/s00894-009-0583-1
  • Khanh, N. T., & Hoa, T. H. (2021). In silico studies of natural products from medicinal plants to identify potential inhibitors for SARS-CoV-2 3C-like protease. Vietnam Journal of Chemistry, 59(5), 557–562. https://doi.org/10.1002/vjch.202000140
  • Kren, V., & Martínková, L. (2001). Glycosides in medicine: "The role of glycosidic residue in biological activity”. Current Medicinal Chemistry, 8(11), 1303–1328. https://doi.org/10.2174/0929867013372193
  • Kokoska, L., Kloucek, P., Leuner, O., & Novy, P. (2019). Plant-derived products as antibacterial and antifungal agents in human health care. Current Medicinal Chemistry, 26(29), 5501–5541. https://doi.org/10.2174/0929867325666180831144344
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). Lynn A. g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), e00020-18. https://doi.org/10.1128/CMR.00020-18
  • Larsen, J., Raisen, C. L., Ba, X., Sadgrove, N. J., Padilla-González, G. F., Simmonds, M. S. J., Loncaric, I., Kerschner, H., Apfalter, P., Hartl, R., Deplano, A., Vandendriessche, S., Černá Bolfíková, B., Hulva, P., Arendrup, M. C., Hare, R. K., Barnadas, C., Stegger, M., Sieber, R. N., … Larsen, A. R. (2022). Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 602(7895), 135–141. https://doi.org/10.1038/s41586-021-04265-w
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., III, MacKerell, A. D., Jr., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Liang, H., He, K., Li, T., Cui, S., Tang, M., Kang, S., Ma, W., & Song, L. (2020). Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Scientific Reports, 10(1), 21416. https://doi.org/10.1038/s41598-020-78379-y
  • Lovering, A. L., Gretes, M. C., Safadi, S. S., Danel, F., de Castro, L., Page, M. G., & Strynadka, N. C. (2012). Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. The Journal of Biological Chemistry, 287(38), 32096–32102. https://doi.org/10.1074/jbc.M112.355644
  • Meng, X., Zhang, G., Sun, B., Liu, S., Wang, Y., Gao, M., Fan, Y., Zhang, G., Shi, G., & Kang, X. (2020). Rapid detection of mecA and femA genes by loop-mediated isothermal amplification in a microfluidic system for discrimination of different Staphylococcal species and prediction of methicillin resistance. Frontiers in Microbiology, 11, 1487. https://doi.org/10.3389/fmicb.2020.01487
  • Moisan, H., Pruneau, M., & Malouin, F. (2010). Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. The Journal of Antimicrobial Chemotherapy, 65(4), 713–716. https://doi.org/10.1093/jac/dkp503
  • Mogana, R., Adhikari, A., Tzar, M. N., Ramliza, R., & Wiart, C. (2020). Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary Medicine and Therapies, 20(1), 55. https://doi.org/10.1186/s12906-020-2837-5
  • Mukherjee, A., Su, A., & Rajan, K. (2021). Deep learning model for identifying critical structural motifs in potential endocrine disruptors. Journal of Chemical Information and Modeling, 61(5), 2187–2197. https://doi.org/10.1021/ACS.JCIM.0C01409
  • Ngan, L. T. M., Dung, P. P., Nhi, N., Hoang, N. V. M., & Hieu, T. T. (2017). Antibacterial activity of ethanolic extracts of some Vietnamese medicinal plants against Helicobacter pylori. AIP Conference Proceedings, 1878(1):020030. https://doi.org/10.1063/1.5000198
  • Nguyen, N. Y. T., Pham, N. S. L., Dang, P. H., Huu, D. M. N., Dang, H. P., & Tran, Q. L. (2020). Two new meroterpenoids from the aerial parts of Ampelopsis cantoniensis (Vitaceae). Journal of Asian Natural Products Research, 22(12), 1152–1158. https://doi.org/10.1080/10286020.2019.1694007
  • Otero, L. H., Rojas-Altuve, A., Llarrull, L. I., Carrasco-López, C., Kumarasiri, M., Lastochkin, E., Fishovitz, J., Dawley, M., Hesek, D., Lee, M., Johnson, J. W., Fisher, J. F., Chang, M., Mobashery, S., & Hermoso, J. A. (2013). How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 16808–16813. https://doi.org/10.1073/pnas.1300118110
  • Qiu, Z., Zhou, J., Hu, J., Wu, Y., & Zheng, G. (2018). Total flavonoids from Ampelopsis megalophylla suppress proliferation of vascular smooth muscle cells in vivo and in vitro. Brazilian Journal of Pharmaceutical Sciences, 53(3), 215. https://doi.org/10.1590/s2175-97902017000300215
  • Rani, N., Vijayakumar, S., Lakshmi, P. T. V., & Arunachalam, A. (2016). Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination. Journal of Biomolecular Structure & Dynamics, 34(8), 1778–1796. https://doi.org/10.1080/07391102.2015.1092096
  • Shalaby, M. W., Dokla, E. M. E., Serya, R. A. T., Abouzid, K., & A., M. (2020). Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. European Journal of Medicinal Chemistry, 199, 112312. https://doi.org/10.1016/j.ejmech.2020.112312
  • Tan, T. W., Tsai, H. Y., Chen, Y. F., & Chung, J. G. (2004). Induction of apoptosis in human promyelocytic leukemia HL-60 cells by Ampelopsis cantoniensis crude extract. In Vivo, 18(4), 457–462.
  • Thao, P., T. K., Thu, N., T. X., & Long, D. D. (2017). A survey of antioxidant and antibacterial activities of alcoholic extract of Ampelopsis cantoniensis leaves from the central region Vietnam. The University of Danang. Journal of Science and Technology, 1(110), 136–140. (In Vietnamese)
  • Thuong, P. T., Hung, T. M., & Dang, N. H. (2006). Study on the antioxidant and COX-1, COX-2 inhibitory of extract of Ampelopsis cantoniensis Planch. Tap Chi Duoc Hoc, 357, 27–30.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler, V. G., Jr. (2019). Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nature Reviews. Microbiology, 17(4), 203–218. https://doi.org/10.1038/s41579-018-0147-4
  • Van, T. N., Cuong, T. D., Hung, T. M., Van, L. H., Woo, M. H., Choi, J. S., Lee, J. H., Kim, J. A., & Min, B. S. (2015). Anti-inflammatory compounds from Ampelopsis cantoniensis. Natural Products Communications. 10(3), 383–385.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Verma, A. K., Ahmed, S. F., Hossain, M. S., Bhojiya, A. A., Mathur, A., Upadhyay, S. K., Srivastava, A. K., Vishvakarma, N. K., Barik, M., Rahaman, M. M., & Bahadur, N. M. (2021). Molecular docking and simulation studies of flavonoid compounds against PBP-2a of methicillin-resistant Staphylococcus aureus. Journal of Biomolecular Structure and Dynamics, 40(21),10561–10577. https://doi.org/10.1080/07391102.2021.1944911
  • Vinod, N. V., Shijina, R., Dileep, K. V., & Sadasivan, C. (2010). Inhibition of beta-lactamase by 1,4-naphthalenedione from the plant Holoptelea integrifolia. Applied Biochemistry and Biotechnology, 160(6), 1752–1759. https://doi.org/10.1007/s12010-009-8656-2
  • Xiao, X. N., Wang, F., Yuan, Y. T., Liu, J., Liu, Y. Z., & Yi, X. (2019). Antibacterial activity and mode of action of dihydromyricetin from Ampelopsis grossedentata leaves against food-borne bacteria. Molecules, 24(15), 2831. https://doi.org/10.3390/molecules24152831
  • Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2015). Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Current Medicinal Chemistry, 22(1), 132–149. https://doi.org/10.2174/0929867321666140916113443
  • Zhavoronkov, A. (2018). Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Molecular Pharmaceutics, 15(10), 4311–4313. https://doi.org/10.1021/acs.molpharmaceut.8b00930
  • Wrońska, N., Szlaur, M., Zawadzka, K., & Lisowska, K. (2022). The synergistic effect of triterpenoids and flavonoids - New approaches for treating bacterial infections? Molecules, 27(3), 847. https://doi.org/10.3390/molecules27030847
  • Wu, Y., Bai, J., Zhong, K., Huang, Y., & Gao, H. (2017). A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chemistry, 218, 463–470. https://doi.org/10.1016/j.foodchem.2016.07.090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.