119
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular analyses of the C-terminal CRAF variants associated with cardiomyopathy reveal their opposing impacts on the active conformation of the kinase domain

ORCID Icon, , , ORCID Icon &
Pages 15328-15338 | Received 19 Dec 2022, Accepted 28 Feb 2023, Published online: 16 Mar 2023

References

  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Carlson, G. M., Fenton, A. W. (2016). What mutagenesis can and cannot reveal about allostery. Biophysical Journal, 110(9), 1912–1923. https://doi.org/10.1016/j.bpj.2016.03.021
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12). https://doi.org/10.1063/1.464397
  • Delano, W. L. (2002). The PyMOL Molecular Graphics System. Delano Scientific.
  • Dhandapany, P. S., Razzaque, M. A., Muthusami, U., Kunnoth, S., Edwards, J. J., Mulero-Navarro, S., Riess, I., Pardo, S., Sheng, J., Rani, D. S., Rani, B., Govindaraj, P., Flex, E., Yokota, T., Furutani, M., Nishizawa, T., Nakanishi, T., Robbins, J., Limongelli, G., … Gelb, B. D. (2014). RAF1 mutations in childhood-onset dilated cardiomyopathy. Nature Genetics, 46(6), 635–639. https://doi.org/10.1038/ng.2963
  • Doshi, U., Holliday, M. J., Eisenmesser, E. Z., Hamelberg, D. (2016). Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation. Proceedings of the National Academy of Sciences, 113(17), 4735–4740. https://doi.org/10.1073/pnas.1523573113
  • ElSawy, K. M. (2016). Energy landscape of pentapeptides in a higher-order (f,j) conformational subspace. Advances in Physical Chemistry, 2016, 1–10. https://doi.org/10.1155/2016/3240674
  • Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer Journal, 6(2), 163–168. https://doi.org/10.1093/comjnl/6.2.163
  • Ghanbari, Z., Housaindokht, M. R., Bozorgmehr, M. R., & Izadyar, M. (2017). Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: A molecular dynamic simulation analysis. Journal of Molecular Graphics & Modelling, 78, 176–186. https://doi.org/10.1016/j.jmgm.2017.10.013
  • Ghorbani Sangoli, M., Housaindokht, M. R., & Bozorgmehr, M. R. (2020). Effects of the deglycosylation on the structure and activity of chloroperoxidase: Molecular dynamics simulation approach. Journal of Molecular Graphics & Modelling, 97, 107570. https://doi.org/10.1016/j.jmgm.2020.107570
  • Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., Ludlam, M. J., Stokoe, D., Gloor, S. L., Vigers, G., Morales, T., Aliagas, I., Liu, B., Sideris, S., Hoeflich, K. P., Jaiswal, B. S., Seshagiri, S., Koeppen, H., Belvin, M., Friedman, L. S., & Malek, S. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 464(7287), 431–435. https://doi.org/10.1038/nature08833
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. [Database] https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Holliday, M. J., Camilloni, C., Armstrong, G. S., Vendruscolo, M., Eisenmesser, E. Z. (2017). Networks of dynamic allostery regulate enzyme function. Structure, 25(2), 276–286. https://doi.org/10.1016/j.str.2016.12.003
  • Hu, J., Yu, H., Kornev, A. P., Zhao, J., Filbert, E. L., Taylor, S. S., & Shaw, A. S. (2011). Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proceedings of the National Academy of Sciences of United States of America, 108(15), 6067–6072. https://doi.org/10.1073/pnas.1102554108
  • Huang, J., & MacKerell, A. D. Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Janati-Fard, F., Housaindokht, M. R., & Monhemi, H. (2016). Investigation of structural stability and enzymatic activity of glucose oxidase and its subunits. Journal of Molecular Catalysis B: Enzymatic, 134, 16–24. https://doi.org/10.1016/j.molcatb.2016.09.008
  • Jiménez-Osés, G., Osuna, S., Gao, X., Sawaya, M. R., Gilson, L., Collier, S. J., Huisman, G. W., Yeates, T. O., Tang, Y., Houk, K. N. (2014). The role of distant mutations and allosteric regulation on LovD active site dynamics. Nature Chemical Biology, 10(6), 431–436. https://doi.org/10.1038/nchembio.1503
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Khavani, M., Izadyar, M., & Housaindokht, M. R. (2015). Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach. Physical Chemistry Chemical Physics, 17(38), 25536–25549. https://doi.org/10.1039/C5CP03136B
  • Kornev, A. P., Haste, N. M., Taylor, S. S., & Ten Eyck, L. F. (2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proceedings of the National Academy of Sciences, 103(47), 17783–17788. https://doi.org/10.1073/pnas.0607656103
  • Kumar, S., Nussinov, R. (2002). Close-range electrostatic interactions in proteins. Chembiochem, 3(7), 604–617. https://doi.org/10.1002/1439-7633(20020703)3:7<604::aid-cbic604>3.0.co;2-x
  • Lavoie, H., & Therrien, M. (2015). Regulation of RAF protein kinases in ERK signalling. Nature Reviews Molecular Cell Biology, 16(5), 281–298. https://doi.org/10.1038/nrm3979
  • Lavoie, H., Thevakumaran, N., Gavory, G., Li, J. J., Padeganeh, A., Guiral, S., Duchaine, J., Mao, D. Y., Bouvier, M., Sicheri, F., & Therrien, M. (2013). Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nature Chemical Biology, 9(7), 428–436. https://doi.org/10.1038/nchembio.1257
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., 3rd, MacKerell, A. D., Jr., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Maloney, R. C., Zhang, M., Jang, H., Nussinov, R. (2021). The mechanism of activation of monomeric B-Raf V600E. Computational and Structural Biotechnology Journal, 19, 3349–3363. https://doi.org/10.1016/j.csbj.2021.06.007
  • Marino, K. A., Sutto, L., & Gervasio, F. L. (2015). The effect of a widespread cancer-causing mutation on the inactive to active dynamics of the B-Raf kinase. Journal of the American Chemical Society, 137(16), 5280–5283. https://doi.org/10.1021/jacs.5b01421
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Mohammad, T., Amir, M., Prasad, K., Batra, S., Kumar, V., Hussain, A., Rehman, M. T., AlAjmi, M. F., & Hassan, M. I. (2020). Impact of amino acid substitution in the kinase domain of Bruton tyrosine kinase and its association with X-linked agammaglobulinemia. International Journal of Biological Macromolecules, 164, 2399–2408. https://doi.org/10.1016/j.ijbiomac.2020.08.057
  • Mohseni-Shahri, F. S., Housaindokht, M. R., Bozorgmehr, M. R., & Moosavi-Movahedi, A. A. (2016). Influence of taxifolin on the human serum albumin–propranolol interaction: Multiple spectroscopic and chemometrics investigations and molecular dynamics simulation. Journal of Solution Chemistry, 45(2), 265–285. https://doi.org/10.1007/s10953-016-0435-4
  • Monhemi, H., & Housaindokht, M. R. (2016). Chemical modification of biocatalyst for function in supercritical CO2: In silico redesign of stable lipase. The Journal of Supercritical Fluids, 117, 147–163. https://doi.org/10.1016/j.supflu.2016.06.015
  • Nakhaei-Rad, S., Bazgir, F., Dahlmann, J., Busley, A. V., Buchholzer, M., Haghighi, F., Schänzer, A., Hahn, A., Kötter, S., Schanze, D., Anand, R., Funk, F., Borchardt, A., Kronenbitter, A. V., Scheller, J., Piekorz, R. P., Reichert, A. S., Volleth, M., Wolf, M. J., … Ahmadian, M. R. (2022). Alteration of myocardial structure and function in RAF1-associated Noonan syndrome: Insights from cardiac disease modeling based on patient-derived iPSCs. bioRxiv. https://doi.org/10.1101/2022.01.22.477319
  • Nakhaei-Rad, S., Haghighi, F., Nouri, P., Rezaei Adariani, S., Lissy, J., Kazemein Jasemi, N. S., Dvorsky, R., & Ahmadian, M. R. (2018). Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Critical Reviews in Biochemistry and Molecular Biology, 53(2), 130–156. https://doi.org/10.1080/10409238.2018.1431605
  • Nakhaeizadeh, H., Amin, E., Nakhaei-Rad, S., Dvorsky, R., & Ahmadian, M. R. (2016). The RAS-effector interface: Isoform-specific differences in the effector binding regions. PLoS One, 11(12), e0167145. https://doi.org/10.1371/journal.pone.0167145
  • Nussinov, R., Tsai, C.-J., & Jang, H. (2022). Allostery, and how to define and measure signal transduction. Biophysical Chemistry, 283, 106766. https://doi.org/10.1016/j.bpc.2022.106766
  • Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., Pogna, E. A., Schackwitz, W., Ustaszewska, A., Landstrom, A., Bos, J. M., Ommen, S. R., Esposito, G., Lepri, F., Faul, C., Mundel, P., López Siguero, J. P., Tenconi, R., Selicorni, A., … Gelb, B. D. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39(8), 1007–1012. https://doi.org/10.1038/ng2073
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Razzaque, M. A., Nishizawa, T., Komoike, Y., Yagi, H., Furutani, M., Amo, R., Kamisago, M., Momma, K., Katayama, H., Nakagawa, M., Fujiwara, Y., Matsushima, M., Mizuno, K., Tokuyama, M., Hirota, H., Muneuchi, J., Higashinakagawa, T., & Matsuoka, R. (2007). Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nature Genetics, 39(8), 1013–1017. https://doi.org/10.1038/ng2078
  • Rezaei Adariani, S., Buchholzer, M., Akbarzadeh, M., Nakhaei-Rad, S., Dvorsky, R., & Ahmadian, M. R. (2018). Structural snapshots of RAF kinase interactions. Biochemical Society Transactions, 46(6), 1393–1406. https://doi.org/10.1042/BST20170528
  • Roskoski, R. Jr. (2010). RAF protein-serine/threonine kinases: Structure and regulation. Biochemical and Biophysical Research Communications, 399(3), 313–317. https://doi.org/10.1016/j.bbrc.2010.07.092
  • Shao, Q., Xu, Z., Wang, J., Shi, J., & Zhu, W. (2017). Energetics and structural characterization of the "DFG-flip" conformational transition of B-RAF kinase: A SITS molecular dynamics study. Physical Chemistry Chemical Physics, 19(2), 1257–1267. https://doi.org/10.1039/C6CP06624K
  • Thevakumaran, N., Lavoie, H., Critton, D. A., Tebben, A., Marinier, A., Sicheri, F., & Therrien, M. (2015). Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nature Structural & Molecular Biology, 22(1), 37–43. https://doi.org/10.1038/nsmb.2924
  • Wallqvist, A., Ose, N. J., Butler, B. M., Kumar, A., Kazan, I. C., Sanderford, M., Kumar, S., Ozkan, S. B. (2022). Dynamic coupling of residues within proteins as a mechanistic foundation of many enigmatic pathogenic missense variants. PLoS Computational Biology, 18(4), e1010006. https://doi.org/10.1371/journal.pcbi.1010006
  • Wang, Y., Papaleo, E., & Lindorff-Larsen, K. (2016). Mapping transiently formed and sparsely populated conformations on a complex energy landscape. eLife, 5, e17505.
  • Webb, B., & Sali, A. (2014). Protein structure modeling with MODELLER. Methods in Molecular Biology (Clifton, N.J.), 1137, 1–15.
  • Yang, S., Banavali, N. K., & Roux, B. (2009). Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Proceedings of the National Academy of Sciences of United States of America, 106(10), 3776–3781. https://doi.org/10.1073/pnas.0808261106
  • Zhang, M., Maloney, R., Jang, H., & Nussinov, R. (2021). The mechanism of Raf activation through dimerization. Chemical Science, 12(47), 15609–15619. https://doi.org/10.1039/D1SC03444H
  • Zhu, J., Wang, J., Han, W., Xu, D. (2022). Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29331-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.