254
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Comparative anti-Diabetic potential of phytocompounds from Dr. Duke's phytochemical and ethnobotanical database and standard antidiabetic drugs against diabetes hyperglycemic target proteins: an in silico validation

, , , &
Pages 15137-15149 | Received 02 Dec 2022, Accepted 23 Feb 2023, Published online: 03 Apr 2023

References

  • Alhakamy, N. A., Mohamed, G. A., Fahmy, U. A., Eid, B. G., Ahmed, O. A. A., Al-Rabia, M. W., Khedr, A. I. M., Nasrullah, M. Z., & Ibrahim, S. R. M. (2022). New alpha-amylase inhibitory metabolites from pericarps of Garcinia mangostana. Life, 12(3), 384. https://doi.org/10.3390/life12030384
  • Allouche, A. (2011). Software news and updates gabedit—a graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc.21600
  • Anitha Gopal, B., & Muralikrishna, G. (2009). Porcine pancreatic α-amylase and its isoforms: purification and kinetic studies. International Journal of Food Properties, 12(3), 571–586. https://doi.org/10.1080/10942910801947755
  • Aramice, Y. S., Malkhasian., & B. J., Howlin. (2016). Docking and DFT studies on ligand binding to quercetin 2,3-dioxygenase. Journal of Biomolecular Structure & Dynamics, 34(11), 2453–2461. https://doi.org/10.1080/07391102.2015.1123190
  • Arumugam, G., Manjula, P., & Paari, N. (2013). A review: Anti diabetic medicinal plants used for diabetes mellitus. Journal of Acute Disease, 2(3), 196–200. https://doi.org/10.1016/S2221-189(13)60126-2
  • Baez-Santos, Y. M., St John, S. E., & Mesecar, A. D. (2015). The SARS-Coronavirus papain-like protease: structure, function, and inhibition by designed antiviral compounds. Antiviral Research, 115(2015), 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
  • Bakal, R. L., Jawarkar, R. D., Manwar, J. V., Jaiswal, M. S., Ghosh, A., Gandhi, A., Zaki, M. E. A., Al-Hussain, S., Samad, A., Masand, V. H., Mukerjee, N., Bukhari, S. N. A., Sharma, P., & Lewaa, I. (2022). Identification of potent aldose reductase inhibitors as antidiabetic (Anti-hyperglycemic) agents using QSAR based virtual screening, molecular docking, MD simulation and MMGBSA approaches. Saudi Pharmaceutical Journal, 30(6), 693–710. https://doi.org/10.1016/j.jsps.2022.04.003
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D Biological Crystallography, 58(6), 899–907. https://doi.org/10.1107/S0907444902003451
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 43–). https://doi.org/10.1109/SC2006
  • Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. (2018). Computer-aided prediction of pharmacokinetic (ADMET) properties. Dosage form design parameters. Academic Press, pp. 731–755.
  • Chaudhury, A., Duvoor, C., Dendi, R., Sena, V., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P., & Mirza, W. (2017). Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8, 6. https://doi.org/10.3389/fendo.2017.00006
  • Chung, S. S., & Chung, S. K. (2003). Genetic analysis of aldose reductase in diabetic complications. Current Medicinal Chemistry, 10(15), 1375–1387. https://doi.org/10.2174/0929867033457322
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Damián-Medina, K., Salinas-Moreno, Y., Milenkovic, D., Figueroa-Yáñez, L., Marino-Marmolejo, E., Higuera-Ciapara, I., Vallejo-Cardona, A., & Lugo-Cervantes, E. (2020). In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.) Heliyon, 6(3), e03632. https://doi.org/10.1016/j.heliyon.2020.e03632
  • Genheden, S., & Ryde, U. (2015). Ulf the MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gupta, R. C., Chang, D., Nammi, S., Bensoussan, A., Bilinski, K., & Roufogalis, B. D. (2017). Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetology & Metabolic Syndrome, 9(1), 59. https://doi.org/10.1186/s13098-017-0254-9
  • Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). In Silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Frontiers in Pharmacology, 10(2019), 434. https://doi.org/10.3389/fphar.2019.00434
  • Hu, C., & Jia, W. (2019). Therapeutic medication against diabetes: What we have and what we expect. Advanced Drug Delivery Reviews, 139, 3–15. https://doi.org/10.1016/j.addr.2018.11.008
  • Janeček, Š., & Baláž, Š. (1992). α-Amylases and approaches leading to their enhanced stability. FEBS Letters, 304(1), 1–3. https://doi.org/10.1016/0014-5793(92)80575-2
  • Jugran, A. K., Rawat, S., Devkota, H. P., Bhatt, I. D., & Rawal, R. S. (2020). Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytotherapy Research, 5(1), 223–245. https://doi.org/10.1002/ptr.6821
  • Kabir, A. U., Samad, M. B., D’Costa, N. M., Akhter, F., Ahmed, A., & Hannan, J. M. A. (2014). Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding. BMC Complementary and Alternative Medicine, 14(1), 1–14. https://doi.org/10.1186/1472-6882-14-31
  • Kazeem, M. I., Adamson, J. O., & Ogunwande, I. A. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Research International, 2013, 527570. https://doi.org/10.1155/2013/527570
  • Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19. https://doi.org/10.4103/0973-7847.79096
  • Kumari, N., Kulkarni, A. A., Lin, X., McLean, C., Ammosova, T., Ivanov, A., Hipolito, M., Nekhai, S., & Nwulia, E. (2015). Inhibition of HIV-1 by Curcumin A, a novel curcumin analog. Drug Design, Development and Therapy, 9(2015), 5051–5060. https://doi.org/10.2147/DDDT.S86558
  • Lyann, S., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., & Rose, D. R. (2008). Human intestinal maltase–glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. Journal of Molecular Biology, 375(3), 782–792. https://doi.org/10.1016/j.jmb.2007.10.069
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Martínez-Archundia, M., Hernández Mojica, T. G., Correa-Basurto, J., Montaño, S., & Camacho-Molina, A. (2020). Molecular dynamics simulations reveal structural differences among wild-type NPC1 protein and its mutant forms. Journal of Biomolecular Structure and Dynamics, 38(12), 3527–3532. https://doi.org/10.1080/07391102.2019.1664324
  • Menachery, V. D., Yount, B. L., Debbink, K., Agnihothram, S., Gralinski, L. E., Plante, J. A., Graham, R. L., Scobey, T., Ge, X.-Y., Donaldson, E. F., Randell, S. H., Lanzavecchia, A., Marasco, W. A., Shi, Z.-L., & Baric, R. S. (2015). A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine, 21(12), 1508–1513. https://doi.org/10.1038/nm.3985
  • Mishra, S. S., Kumar, N., Singh, H. P., Ranjan, S., & Sharma, C. S. (2018). In silico pharmacokinetic, bioactivity and toxicity study of some selected anti-asthmatic agents. Int. J.Pharm. Sci. Drug Res, 10, 278–282.
  • Pandit, R., Phadke, A., & Jagtap, A. (2010). Antidiabetic effect of Ficus religiosa extract in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology 128(2), 462–466. https://doi.org/10.1016/j.jep.2010.01.025
  • Petrash, J. M., Tarle, I., Wilson, D. K., & Quiocho, F. A. (1994). Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function. Diabetes, 43(8), 955–959. https://doi.org/10.2337/diabetes.43.8.955
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pricopie, A.-I., Ionuț, I., Marc, G., Arseniu, A.-M., Vlase, L., Grozav, A., Găină, L. I., Vodnar, D. C., Pîrnău, A., Tiperciuc, B., & Oniga, O. (2019). Design and synthesis of novel 1,3-Thiazole and 2-Hydrazinyl-1,3-Thiazole derivatives as anti-candida agents: in vitro antifungal screening, molecular docking study, and spectroscopic investigation of their binding interaction with bovine serum albumin. Molecules, 24(19), 3435. https://doi.org/10.3390/molecules24193435
  • Rathinavel, T., Ammashi, S., & Marimuthu, S. (2020). Optimization of zinc oxide nanoparticles biosynthesis from Crateva adansonii using Box-Behnken design and its antimicrobial activity. Chemical Data Collections, 30, 1–10. https://doi.org/10.1016/j.cdc.2020.100581
  • Rathinavel, T., Ammashi, S., Thangaswamy, S., & Shanmugam, G. (2019). Identification of anti-diabetic phytocompounds from Ficus racemosa and its validation through in silico molecular Modeling. International Journal of Advanced Science and Engineering, 5(4), 1085–1098. https://doi.org/10.29294/IJASE.5.4.2019.1085-1098
  • Rathinavel, T., Iqbal, M. N., & Kumarasamy, S. (2021). Lupeol from Crateva adansonii DC exhibits promising enzymes inhibition: Play a crucial role in inflammation and diabetes. South African Journal of Botany, 143, 449–456. https://doi.org/10.1016/j.sajb.2021.08.023
  • Rathore, P. K., Arathy, V., Attimarad, V. S., Kumar, P., & Roy, S. (2016). In-silico analysis of gymnemagenin from Gymnemasylvestre (Retz.) R. Br. with targets related to diabetes. Journal of Theoretical Biology, 391, 95–101. https://doi.org/10.1016/j.jtbi.2015.12.004
  • Safitri, A., Fatchiyah, F., Sari, D. R. T., & Roosdiana, A. (2020). Phytochemical screening, in vitro anti-oxidant activity, and in silico antidiabetic activity of aqueous extracts of Ruellia tuberosa L. Journal of Applied Pharmaceutical Science, 10(03), 101–108. https://doi.org/10.7324/JAPS.2020.103013
  • Salehi, B., Ata, A., Anil Kumar, V., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Ayatollahi, S. A., Fokou, P. V. T., Kobarfard, F., Zakaria, Z. A., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, N. W., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., … Sharifi-Rad, J. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Sindhu, M. S., Poonkothai, M., & Thirumalaisamy, R. (2022). Phenolic and terpene compounds from Plectranthus amboinicus (Lour.) Spreng. Act as promising hepatic anticancer agents screened through in silico and in vitro approaches. South African Journal of Botany, 149(2022), 145–159. https://doi.org/10.1016/j.sajb.2022.06.001
  • So, W.-Y., Wang, Y., Ng, M. C. Y., Yang, X., Ma, R. C. W., Lam, V., Kong, A. P. S., Tong, P. C. Y., & Chan, J. C. N. (2008). Aldose reductase genotypes and cardiorenal complications: an 8-year prospective analysis of 1,074 type 2 diabetic patients. Diabetes Care, 31(11), 2148–2153. https://doi.org/10.2337/dc08-0712
  • Subramaniam, S., Kumarasamy, S., Narayanan, M., Ranganathan, M., Rathinavel, T., Chinnathambi, A., Alahmadi, T. A., Karuppusamy, I., Pugazhendhi, A., & Whangchai, K. (2022). Spectral and structure characterization of Ferula assafoetida fabricated silver nanoparticles and evaluation of its cytotoxic, and photocatalytic competence. Environmental Research, 204, 111987. https://doi.org/10.1016/j.envres.2021.111987
  • Supkamonseni, N., Thinkratok, A., Meksuriyen, D., & Srisawat, R. (2014). Hypolipidemic and hypoglycemic effects of Centella asiatica (L.) extract in vitro and in vivo. Indian Journal of Experimental Biology, 52(10), 965–971.
  • Thirumalaisamy, R., Aroulmoji, V., Iqbal, M. N., Saride, S., Bhuvaneswari, M., Deepa, M., Sivasankar, C., & Khan, R. (2022). Molecular insights of hyaluronic acid – ethambutol and hyaluronic acid – isoniazid drug conjugates act as promising novel drugs for the treatment of tuberculosis. Journal of Biomolecular Structure and Dynamics, Mar 16,1–12. https://doi.org/10.1080/07391102.2022.2051748
  • Trott, O., & Olson, A. J. (2010). Auto-dock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology & Research, 3(4), 200–201. https://doi.org/10.4103/2231-4040.104709
  • Vo, T. H. N., Tran, N., Nguyen, D., & Le, L. (2016). An in silico study on antidiabetic activity of bioactive compounds in Euphorbia thymifolia Linn. SpringerPlus, 5(1), 1359. https://doi.org/10.1186/s40064-016-2631-5
  • Watarai, A., Nakashima, E., Hamada, Y., Watanabe, G., Naruse, K., Miwa, K., Kobayashi, Y., Kamiya, H., Nakae, M., Hamajima, N., Sekido, Y., Niwa, T., Oiso, Y., & Nakamura, J. (2006). Aldose reductase gene is associated with diabetic macroangiopathy in Japanese Type 2 diabetic patients. Diabetic Medicine: a Journal of the British Diabetic Association, 23(8), 894–899. https://doi.org/10.1111/j.1464-5491.2006.01946.x
  • Weininger, D. (1988). SMILES, a chemical language and information system. Introduction to methodology and encoding rules. Journal of Chemical Information and Modeling, 28(1), 31–36. https://doi.org/10.1021/ci00057a005
  • Wink, M. (2015). Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel, Switzerland), 2(3), 251–286. https://doi.org/10.3390/medicines2030251

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.