348
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modeling of pyrrolo-pyrimidine based analogs as potential FGFR1 inhibitors: a scientific approach for therapeutic drugs

, , , , , , , , , & show all
Pages 14358-14371 | Received 30 Aug 2022, Accepted 10 Feb 2023, Published online: 10 Mar 2023

References

  • Arantes, P. R., Polêto, M. D., Pedebos, C., & Ligabue-Braun, R. (2021). Making it rain: Cloud-based molecular simulations for everyone. Journal of Chemical Information and Modeling, 61(10), 4852–4856. https://doi.org/10.1021/acs.jcim.1c00998
  • Astolfi, A., Pantaleo, M. A., Indio, V., Urbini, M., & Nannini, M. (2020). The emerging role of the FGF/FGFR pathway in gastrointestinal stromal tumor. International Journal of Molecular Sciences, 21(9), 3313. https://doi.org/10.3390/ijms21093313
  • Bursulaya, B. D., Totrov, M., Abagyan, R., & Brooks, C. L. (2003). Comparative study of several algorithms for flexible ligand docking. Journal of Computer-Aided Molecular Design, 17(11), 755–763. https://doi.org/10.1023/B:JCAM.0000017496.76572.6f
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. ACS Publications.
  • Chew, N. J., Lim Kam Sian, T. C. C., Nguyen, E. V., Shin, S.-Y., Yang, J., Hui, M. N., Deng, N., McLean, C. A., Welm, A. L., Lim, E., Gregory, P., Nottle, T., Lang, T., Vereker, M., Richardson, G., Kerr, G., Micati, D., Jardé, T., Abud, H. E., … Daly, R. J. (2021). Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Research, 23(1), 1–20. https://doi.org/10.1186/s13058-021-01461-4
  • Chohan, T. A., Chen, J.-J., Qian, H.-Y., Pan, Y.-L., & Chen, J.-Z. (2016). Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations. Molecular BioSystems, 12(4), 1250–1268. https://doi.org/10.1039/C5MB00860C
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • French, D. M., Lin, B. C., Wang, M., Adams, C., Shek, T., Hötzel, K., Bolon, B., Ferrando, R., Blackmore, C., Schroeder, K., Rodriguez, L. A., Hristopoulos, M., Venook, R., Ashkenazi, A., & Desnoyers, L. R. (2012). Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One, 7(5), e36713. https://doi.org/10.1371/journal.pone.0036713
  • Fu, W., Chen, L., Wang, Z., Kang, Y., Wu, C., Xia, Q., Liu, Z., Zhou, J., Liang, G., & Cai, Y. (2017). Theoretical studies on FGFR isoform selectivity of FGFR1/FGFR4 inhibitors by molecular dynamics simulations and free energy calculations. Physical Chemistry Chemical Physics, 19(5), 3649–3659. https://doi.org/10.1039/C6CP07964D
  • Ghedini, G. C., Ronca, R., Presta, M., & Giacomini, A. (2018). Future applications of FGF/FGFR inhibitors in cancer. Expert Review of Anticancer Therapy, 18(9), 861–872. https://doi.org/10.1080/14737140.2018.1491795
  • Göke, F., Franzen, A., Hinz, T. K., Marek, L. A., Yoon, P., Sharma, R., Bode, M., von Maessenhausen, A., Lankat-Buttgereit, B., Göke, A., Golletz, C., Kirsten, R., Boehm, D., Vogel, W., Kleczko, E. K., Eagles, J. R., Hirsch, F. R., Van Bremen, T., Bootz, F., … Perner, S. (2015). FGFR1 expression levels predict BGJ398 sensitivity of FGFR1-dependent head and neck squamous cell cancers. Clinical Cancer Research, 21(19), 4356–4364. https://doi.org/10.1158/1078-0432.CCR-14-3357
  • Guagnano, V., Furet, P., Spanka, C., Bordas, V., Le Douget, M., Stamm, C., Brueggen, J., Jensen, M. R., Schnell, C., Schmid, H., Wartmann, M., Berghausen, J., Drueckes, P., Zimmerlin, A., Bussiere, D., Murray, J., & Graus Porta, D. (2011). Discovery of 3-(2, 6-dichloro-3, 5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. Journal of Medicinal Chemistry, 54(20), 7066–7083. https://doi.org/10.1021/jm2006222
  • Lee, J.-C., Su, S.-Y., Changou, C. A., Yang, R.-S., Tsai, K.-S., Collins, M. T., Orwoll, E. S., Lin, C.-Y., Chen, S.-H., Shih, S.-R., Lee, C.-H., Oda, Y., Billings, S. D., Li, C.-F., Nielsen, G. P., Konishi, E., Petersson, F., Carpenter, T. O., Sittampalam, K., Huang, H.-Y., & Folpe, A. L. (2016). Characterization of FN1–FGFR1 and novel FN1–FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Modern Pathology, 29(11), 1335–1346. https://doi.org/10.1038/modpathol.2016.137
  • Lynch, T., & Price, A. L. (2007). The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician, 76(3), 391–396.
  • Malchers, F., Dietlein, F., Schöttle, J., Lu, X., Nogova, L., Albus, K., Fernandez-Cuesta, L., Heuckmann, J. M., Gautschi, O., Diebold, J., Plenker, D., Gardizi, M., Scheffler, M., Bos, M., Seidel, D., Leenders, F., Richters, A., Peifer, M., Florin, A., … Thomas, R. K. (2014). Cell-autonomous and non–cell-autonomous mechanisms of transformation by amplified FGFR1 in lung cancer. Cancer Discovery, 4(2), 246–257. https://doi.org/10.1158/2159-8290.CD-13-0323
  • Mälkiä, A., Murtomäki, L., Urtti, A., & Kontturi, K. (2004). Drug permeation in biomembranes: In vitro and in silico prediction and influence of physicochemical properties. European Journal of Pharmaceutical Sciences, 23(1), 13–47. https://doi.org/10.1016/j.ejps.2004.05.009
  • Özkan, H., & Adem, Ş. (2020). Spectroscopic characterizations of novel norcantharimides, their ADME properties and docking studies against COVID‐19 Mpr°. ChemistrySelect, 5(18), 5422–5428. https://doi.org/10.1002/slct.202001123
  • Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/s12551-016-0247-1
  • Porta, R., Borea, R., Coelho, A., Khan, S., Araújo, A., Reclusa, P., Franchina, T., Van Der Steen, N., Van Dam, P., Ferri, J., Sirera, R., Naing, A., Hong, D., & Rolfo, C. (2017). FGFR a promising druggable target in cancer: Molecular biology and new drugs. Critical Reviews in Oncology/Hematology, 113, 256–267. https://doi.org/10.1016/j.critrevonc.2017.02.018
  • Prottoy, N. I., Sarkar, B., Ullah, A., Hossain, S., Boby, A. S., & Araf, Y. (2019). Molecular docking and pharmacological property analysis of antidiabetic agents from medicinal plants of Bangladesh against type II diabetes: A computational approach. PharmaTutor, 7(9), 6–15.
  • Roskoski, R. Jr. (2020). The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacological Research, 151, 104567. https://doi.org/10.1016/j.phrs.2019.104567
  • Schyman, P., Liu, R., Desai, V., & Wallqvist, A. (2017). vNN web server for ADMET predictions. Frontiers in Pharmacology, 8, 889. https://doi.org/10.3389/fphar.2017.00889
  • Sim, S., Risinger, C., Dahl, M., Aklillu, E., Christensen, M., Bertilsson, L., & Ingelmansundberg, M. (2006). A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clinical Pharmacology & Therapeutics, 79(1), 103–113. https://doi.org/10.1016/j.clpt.2005.10.002
  • Tsaioun, K., & Kates, S. A. (2011). ADMET for medicinal chemists: A practical guide. John Wiley & Sons.
  • Tucker, J. A., Klein, T., Breed, J., Breeze, A. L., Overman, R., Phillips, C., & Norman, R. A. (2014). Structural insights into FGFR kinase isoform selectivity: Diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure (London, England : 1993), 22(12), 1764–1774. https://doi.org/10.1016/j.str.2014.09.019
  • Vyas, V. K., Ghate, M., & Goel, A. (2013). Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. Journal of Molecular Graphics and Modelling, 42, 17–25. https://doi.org/10.1016/j.jmgm.2013.01.010
  • Wang, Y., Li, L., Fan, J., Dai, Y., Jiang, A., Geng, M., Ai, J., & Duan, W. (2018). Discovery of potent irreversible pan-fibroblast growth factor receptor (FGFR) inhibitors. Journal of Medicinal Chemistry, 61(20), 9085–9104. https://doi.org/10.1021/acs.jmedchem.7b01843
  • Yang, F., Zhang, Y., Ressler, S. J., Ittmann, M. M., Ayala, G. E., Dang, T. D., Wang, F., & Rowley, D. R. (2013). FGFR1 is essential for prostate cancer progression and metastasis. Cancer Research, 73(12), 3716–3724. https://doi.org/10.1158/0008-5472.CAN-12-3274
  • Ye, F., Chen, L., Hu, L., Xiao, T., Yu, S., Chen, D., Wang, Y., Liang, G., Liu, Z., & Wang, S. (2015). Design, synthesis and preliminary biological evaluation of C-8 substituted guanine derivatives as small molecular inhibitors of FGFRs. Bioorganic & Medicinal Chemistry Letters, 25(7), 1556–1560. https://doi.org/10.1016/j.bmcl.2015.02.010
  • Yue, S., Li, Y., Chen, X., Wang, J., Li, M., Chen, Y., & Wu, D. (2021). FGFR-TKI resistance in cancer: current status and perspectives. Journal of Hematology & Oncology, 14(1), 1–14. https://doi.org/10.1186/s13045-021-01040-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.