456
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

A review on medicinally important heterocyclic compounds and importance of biophysical approach of underlying the insight mechanism in biological environment

, , , , , , & show all
Pages 14599-14619 | Received 21 Oct 2022, Accepted 12 Feb 2023, Published online: 13 Mar 2023

References

  • Abdel-Wahab, B. F., Awad, G. E. A., & Badria, F. A. (2011). Synthesis antimicrobial antioxidant anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. European Journal of Medicinal Chemistry, 46(5), 1505–1511. https://doi.org/10.1016/j.ejmech.2011.01.062
  • Ahmad, K. A., Wang, G., Unger, G., Slaton, J., & Ahmed, K. (2008). Protein kinase CK2–a key suppressor of apoptosis. Advances in Enzyme Regulation, 48, 179–187. https://doi.org/10.1016/j.advenzreg.2008.04.002
  • Aliabadi, A., Shamsa, F., Ostad, S. N., Emami, S., Shafiee, A., Davoodi, J., & Foroumadi, A. (2010). Synthesis &biological evaluation of 2- phenylthiazole-4-carboxamide derivatives as anticancer agents. European Journal of Medicinal Chemistry, 45(11), 5384–5389. https://doi.org/10.1016/j.ejmech.2010.08.063
  • Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Voltattorni, M., Zini, M., Stefanelli, C., Masotti, L., & Shoemaker, R. H. (2008). Antitumor activity of new substituted 3-(5-Imidazo[2 1-b] thiazolylmethylene-2-indolinones) and 3-(5-Imidazo[2 1- b]thiadiazolylmethylene-2-indolinones): Selectivity against colon tumor cells and effect on cell cycle-related events. Journal of Medicinal Chemistry, 51(23), 7508–7513. https://doi.org/10.1021/jm800827q
  • Argaman, N., & Makov, G. (2000). Density functional theory-an introduction. American Journal of Physics, 69, 68–79.
  • Arputharaj, D. S., Hathwar, V. R., Guru Row, T. N., & Kumaradhas, P. (2012). Topological electron density analysis and electrostatic properties of aspirin: An experimental and theoretical study. Crystal Growth & Design, 12(9), 4357–4366. https://doi.org/10.1021/cg300269n
  • Bello, M., & Correa-Basurto, J. (2013). Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes. PLoS One, 8(8), e72575. https://doi.org/10.1371/journal.pone.0072575
  • Bhattacharyya, M., Chaudhuri, U., & Poddar, R. K. (1990). Evidence for cooperative binding of chlorpromazine with hemoglobin: Equilibrium dialysis fluorescence quenching and oxygen release study. Biochemical and Biophysical Research Communications, 167(3), 1146–1153. https://doi.org/10.1016/0006-291x(90)90643-2
  • Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., Rinaldo, D., Halls, M. D., Zhang, J., & Friesner, R. A. (2013). Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 113(18), 2110–2142. https://doi.org/10.1002/qua.24481
  • Buddanavar, A. T., & Nandibewoor, S. T. (2017). Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine. Journal of Pharmaceutical Analysis, 7(3), 148–155. https://doi.org/10.1016/j.jpha.2016.10.001
  • Chin, Y. W., Balunas, M. J., Chai, H. B., & Kinghorn, D. A. (2006). Drug discovery from natural sources. The AAPS Journal, 8(2), E239–E253. https://doi.org/10.1007/BF02854894
  • Chinnathambi, S., Karthikeyan, S., Velmurugan, D., Hanagata, N., Aruna, P., & Ganesan, S. (2015). Investigations on the interactions of 5-fluorouracil with herring sperm DNA: Steady state/time resolved and molecular modeling studies. Biophysical Reviews and Letters, 10(02), 115–133.) https://doi.org/10.1142/S1793048015500034
  • Chou, J. Y., Lai, S.-Y., Pan, S.-L., Jow, G.-M., Chern, J.-W., & Gu, J.-H. (2003). Investigation of anticancer mechanism of thiadiazole-based compound in human non-small cell lung cancer A549 cells. Biochemical Pharmacology, 66(1), 115–124. https://doi.org/10.1016/s0006-2952(03)00254-5
  • Coppens, P. (1998). X-ray charge densities and chemical bonding. International Union of Crystallography/Oxford University Press.
  • Cordell, G. A., Quinn-Beattie, G. A., & Farnsworth, G. A. (2001). The potential of alkaloids in drug discovery. Phytotherapy Research: PTR, 15(3), 183–205. https://doi.org/10.1002/ptr.890
  • Cui, F. L., Wang, J. L., Cui, Y. R., & Li, J. P. (2006). Fluorescent investigation of the interactions between N-(p-chlorophenyl)-N -(1-naphthyl) thiourea and serum albumin: Synchronous fluorescence determination of serum albumin. Analytica Chimica Acta, 571(2), 175–183. https://doi.org/10.1016/j.aca.2006.05.002
  • Curry, S., Brick, P., & Franks, N. P. (1999). Fatty acid binding to human serum albumin: New insights from crystallographic studies. Biochimica et Biophysica Acta, 1441(2–3), 131–140. https://doi.org/10.1016/s1388-1981(99)00148-1
  • Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827–835. https://doi.org/10.1038/1869
  • Cyril, L., Earl, J. K., & Sperry, W. M. (1961). Biochemists handbook. E & FN Spon, p. 84.
  • Davidson, E. R., & Feller, D. (1986). Basis set selection for molecular calculations. Chemical Reviews, 86(4), 681–696. https://doi.org/10.1021/cr00074a002
  • Devi, R. N., Stephen, A. D., Justin, P., Saravanan, K., Macchi, P., & Jelsch, C. (2019). Topological and electrostatic properties of diclofenac molecule as a non-steroidal anti-inflammatory drug: An experimental and theoretical study. The Journal of Molecular Structure, 1196, 42–53. https://doi.org/10.1016/j.molstruc.2019.06.027
  • Đilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I., & Cindrić, M. (2008). Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis physicochemical and structural properties DNA interactions and ant proliferative activity. Bioorganic and Medicinal Chemistry. 16(9), 5189–5198. https://doi.org/10.1016/j.bmc.2008.03.006
  • Ding, F., Huang, J., Lin, J., Li, Z. H., Liu, F., Jiang, Z. H., & Sun, Y. (2009). A study of the binding of CI Mordant Red 3 with bovine serum albumin using fluorescence spectroscopy. Dyes Pigments, 82(1), 65–70. https://doi.org/10.1016/j.dyepig.2008.11.003
  • Ding, F., Zhang, L., Diao, J. X., Li, X. N., Ma, L., & Sun, Y. (2012). Human serum albumin stability and toxicity of anthraquinone dye alizarin complexone: An albumin–dye model. Ecotoxicology and Environmental Safety, 79, 238–246. https://doi.org/10.1016/j.ecoenv.2012.01.009
  • Domotor, O., Tuccinardi, T., Karcz, D., Walsh, M., Creaven, B. S., & Enyedy, E. A. (2014). Interaction of anticancer reduced Schiff base coumarin derivatives with human serum albumin investigated by fluorescence quenching and molecular modeling. Bioorganic Chemistry, 52, 16–23. https://doi.org/10.1016/j.bioorg.2013.10.003
  • Dua, R., Shrivastava, S., Sonwane, S. K., & Srivastava, S. K. (2011). Pharmacological significance of synthetic heterocycles scaffold: A review. Advances in Biological Research, 5(3), 120–144.
  • Dunning, T. H. Jr. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics, 90(2), 1007–1023. https://doi.org/10.1063/1.456153
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods expanded force field and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Eftink, M. R., & Ghiron, C. A. (1977). Exposure of tryptophanyl residues and protein dynamics. Biochemistry, 16(25), 5546–5551. https://doi.org/10.1021/bi00644a024
  • Elmegeed, G. A., Khalil, W. K. B., Raouf, A. A. B., & Abdelhalim, M. M. A. (2008). Synthesis and in vivo anti-mutagenic activity of novel melatonin derivatives. European Journal of Medicinal Chemistry, 43(4), 763–770. https://doi.org/10.1016/j.ejmech.2007.06.003
  • Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., & Scuseria, G. E. (2009). Gaussian 09 package. Gaussian Inc.
  • Gadre, S. R. (1999). Topography of atomic and molecular scalar fields. In Jerzy Leszczynski (Ed.), Computational chemistry: Reviews of current trends (pp. 1–53). USA: Jackson State University; World Scientific. https://doi.org/10.1142/4163
  • Gelamo, E. L., Silva, C., Imasato, H., & Tabak, M. (2002). Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: Spectroscopy and modeling. Biochimica et Biophysica Acta, 1594(1), 84–99. https://doi.org/10.1016/s0167-4838(01)00287-4
  • Govindasamy, H., Magudeeswaran, S., Kandasamy, S., & Poomani, K. (2021). Binding mechanism of naringenin with monoamine oxidase–B enzyme: QM/MM and molecular dynamics perspective. Heliyon, 7(4), e06684. https://doi.org/10.1016/j.heliyon.2021.e06684
  • Gowda, J. I., & Nandibewoor, S. T. (2014). Binding and conformational changes of human serum albumin upon interaction with 4- aminoantipyrine studied by spectroscopic methods and cyclic voltammetry. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 124, 397–403. https://doi.org/10.1016/j.saa.2014.01.028
  • Groenhof, G. (2013). Introduction to QM/MM simulations. In Biomolecular simulations (pp. 43–66). Humana Press.
  • Gupta, S. C., Sung, B., Prasad, S., Webb, L. I., & Aggarwal, B. B. (2013). Cancer drug discovery by repurposing: Teaching new tricks to old dogs. Trends in Pharmacological Sciences, 34(9), 508–517. https://doi.org/10.1016/j.tips.2013.06.005
  • Hübschle, C. B., & Luger, P. (2006). MolIso–a program for colour-mapped iso-surfaces. Journal of Applied Crystallography, 39(6), 901–904. https://doi.org/10.1107/S0021889806041859
  • Hughes, E. K., & Shanks, J. V. (2002). Metabolic engineering of plants for alkaloid production. Metabolic Engineering, 4(1), 41–48. https://doi.org/10.1006/mben.2001.0205
  • Jensen, F. (2001). Polarization consistent basis sets: Principles. Journal of Chemical Physics, 115(20), 9113–9125. https://doi.org/10.1063/1.1413524
  • Joule, J. A. (2010). Heterocyclic chemistry (4th ed., p. 369). Blackwell Publishing.
  • Kalaiarasi, C., Pavan, M. S., & Kumaradhas, P. (2016). Topological characterization of electron density, electrostatic potential and intermolecular interactions of 2-nitroimidazole: An experimental and theoretical study. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 72(Pt 5), 775–786. https://doi.org/10.1107/S2052520616010581
  • Kandagalla, S., Rimac, H., Potemkin, V. A., & Grishina, M. A. (2021). Complementarity principle in terms of electron density for the study of EGFR complexes. Future Medicinal Chemistry, 13(10), 863–875. https://doi.org/10.4155/fmc-2020-0265
  • Kandasamy, S., Loganathan, C., Sakayanathan, P., Karthikeyan, S., Stephen, A. D., Marimuthu, D. K., Ravichandran, S., Sivalingam, V., & Thayumanavan, P. (2021). In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase. International Journal of Biological Macromolecules, 185, 750–760. https://doi.org/10.1016/j.ijbiomac.2021.06.176
  • Kandasamy, S., Loganathan, C., Sakayanathan, P., Subramani, K., Marimuthu, D. K., Ravichandran, S., Sivalingam, V., & Thayumanavan, P. (2021). Identifying amine fragments as potential inhibitors of acetylcholinesterase and butyrylcholinesterase through in silico analysis and validation through in vitro enzyme inhibition analysis. Alzheimer’s & Dementia, 17(S9), e052742. https://doi.org/10.1002/alz.052742
  • Karthikeyan, S., Bharanidharan, G., Mangaiyarkarasi, R., Shanmugavel, C., Sriram, R., Gunasekaran, K., Saravanan, K., Gopikrishnan, M., Aruna, P., & Ganesan, S. (2018). A cytotoxicity optical spectroscopy and computational binding analysis of 4-[3- acetyl-5-(acetylamino)-2-methyl-2 3-dihydro-1 3 4-thiadiazole-2-yl]phenylbenzoate in calf thymus DNA. Luminescence: The Journal of Biological and Chemical Luminescence, 33(4), 731–741. https://doi.org/10.1002/bio.3470
  • Karthikeyan, S., Bharanidharan, G., Ragavan, S., Kandasamy, S., Chinnathambi, S., Udayakumar, K., Mangaiyarkarasi, R., Suganya, R., Aruna, P., & Ganesan, S. (2019a). Exploring the binding interaction mechanism of taxol in β – tubulin and bovine serum albumin: A biophysical approach. Molecular Pharmaceutics, 16(2), 669–681. https://doi.org/10.1021/acs.molpharmaceut.8b00948
  • Karthikeyan, S., Bharanidharan, G., Ragavan, S., Kandasamy, S., Chinnathambi, S., Udayakumar, K., Mangaiyarkarasi, R., Sundaramoorthy, A., Aruna, P., & Ganesan, S. (2019b). Comparative binding analysis of N- acetylneuraminic acid in bovine serum albumin and human α-1 acid glycoprotein. Journal of Chemical Information and Modeling, 59(1), 326–338. https://doi.org/10.1021/acs.jcim.8b00558
  • Karthikeyan, S., Chinnathambi, S., Kannan, A., Rajakumar, P., Velmurugan, D., Bharanidharan, G., Aruna, P., & Ganesan, S. (2015). Investigation of optical spectroscopic and computational binding mode of bovine serum albumin with 1 4-Bis ((4-((4- heptylpiperazin-1-yl) methyl)-1H-1 2 3-triazol-1-yl) methyl) benzene. Journal of Biochemical and Molecular Toxicology, 29(8), 373–381. https://doi.org/10.1002/jbt.21704
  • Karthikeyan, S., Rajesh, R., Zalte, R., Festa, A. A., & Voskressensky, L. G. (2019). Understanding the binding mechanism of a pyrazino[1 2-a] indole derivative with calf thymus DNA. ChemistrySelect, 4(18), 5214–5221. https://doi.org/10.1002/slct.201803838
  • Karthikeyan, S., Yue, X., Festa, A. A., & Voskressensky, L. G. (2021). Insights into the binding interaction mechanism of 12 12-dihydrochromeno[2 3-c]isoquinolin-5-amine in bovine serum albumin and prostaglandin H2 synthase: A biophysical approach. Journal of Molecular Structure. 1245, 131131. https://doi.org/10.1016/j.molstruc.2021.131131
  • Karthikeyan, S., Yue, X., Festa, A. A., & Voskressensky, L. G. (2020). Understanding the binding information of 1-imino-1 2- dihydropyrazino[1 2-a]indol-3(4H)-one in bovine serum albumin 5-hydroxytryptaminereceptor 1B and human carbonic anhydrase I: A biophysical approach. Journal of Molecular Liquids, 304, 112793. https://doi.org/10.1016/j.molliq.2020.112793
  • Katritzky, A. R. (1992). Heterocyclic chemistry: An academic subject of immense industrial importance. Chemistry of Heterocyclic Compounds, 28(3), 241–259. https://doi.org/10.1007/BF00529362
  • Kennard, O. (1993). DNA–drug interactions. Pure and Applied Chemistry, 65(6), 1213–1222. https://doi.org/10.1351/pac199365061213
  • Kevin, J. B., Edmond, C., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Istvan, K., Moraes, M. A., SacerdotI, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006, November 11–17). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06).
  • Kim, K. M., Kim, K. H., Kang, T. C., Kim, W. Y., Lee, M. R., Jung, H. J., Hwang, I. K., Ko, S. B., Koh, J. Y., Won, M. H., Oh, E. g., & Shin, I. (2003). Design and biological evaluation of novel antioxidants containing Nt-Butyl-N-hydroxylaminophenyl moieties. Bioorganic & Medicinal Chemistry Letters, 13(14), 2273–2275. https://doi.org/10.1016/s0960-894x(03)00444-x
  • Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery, 4(3), 206–220. https://doi.org/10.1038/nrd1657
  • Koster, A. M., Kolle, C., & Jug, K. (1993). Approximation of molecular electrostatic potentials. Journal of Chemical Physics, 99(2), 1224–1229. https://doi.org/10.1063/1.465366
  • Lacowicz, J. R. (2006). Introduction to fluorescence, principles of fluorescence spectroscopy (3rd ed., p. 5). Springer US.
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). Springer New York.
  • Lehtola, S. (2015). Automatic algorithms for completeness‐optimization of G aussian basis sets. Journal of Computational Chemistry, 36, 335–347.
  • Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology, 3, 18–30. https://doi.org/10.1016/s0022-2836(61)80004-1
  • Levine, IN. (1991). Quantum chemistry (4th ed., pp. 455–544). Prentice Hall.
  • Li, X.-L., Hu, Y.-J., Wang, H., Yu, B.-Q., & Yue, H.-L. (2012). Molecular spectroscopy evidence of berberine binding to DNA: Comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3), 873–880. https://doi.org/10.1021/bm2017959
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wave function analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P., Richter, T., Koritsanszky, T., & Volkov, A. (2016). XD2016.
  • Manninen, P., & Vaara, J. (2006). Systematic Gaussian basis‐set limit using completeness‐optimized primitive sets. A case for magnetic properties. Journal of Computational Chemistry, 27(4), 434–445. https://doi.org/10.1002/jcc.20358
  • Menikarachchi, L. C., & Gascón, J. A. (2010). QM/MM approaches in medicinal chemistry research. Current Topics in Medicinal Chemistry, 10(1), 46–54. https://doi.org/10.2174/156802610790232297
  • Mladenovic, M., Arnone, M., Fink, R. F., & Engels, B. (2009). Environmental effects on charge densities of biologically active molecules: Do molecule crystal environments indeed approximate protein surroundings? The Journal of Physical Chemistry B, 113(15), 5072–5082. https://doi.org/10.1021/jp809537v
  • Moghaddam, G., Ebrahimi, S. A., Roshandel, N. R., & Foroumadi, A. (2012). Antiproliferative activity of flavonoids: Influence of the sequential methoxylation state of the flavonoid structure. Phytotherapy Research: PTR, 26(7), 1023–1028. https://doi.org/10.1002/ptr.3678
  • Mohammadi-Farani, A., Foroumadi, A., Kashani, M. R., & Aliabadi, A. (2014). N-phenyl-2- P-tolylthiazole-4-carboxamide derivatives: Synthesis and cytotoxicity evaluation as anticancer agents. Iranian Journal of Basic Medical Sciences, 17(7), 502–508.
  • Nagalakshmi, G. (2008). Synthesis antimicrobial and antiinflammatory activity of 2 5-disubstituted-1 3 4-oxadiazoles. Indian Journal of Pharmaceutical Sciences, 70(1), 49–55. https://doi.org/10.4103/0250-474X.40331
  • Naumovich, V., Grishina, M., & Potemkin, V. (2022). Establishment of models for reliability evaluation of 3CLpro ligand-receptor complexes with different binding sites. Future Medicinal Chemistry, 14(7), 501–510. https://doi.org/10.4155/fmc-2021-0271
  • Nekrasov, D. D. (2001). Biological Activity of 5- &6-Membered Azaheterocycles &Their Synthesis from 5-Aryl-2 3-Dihydrofuran-2 3- diones. Chemistry of Heterocyclic Compounds, 37(3), 263–275.
  • Niu, X., Gao, X., Wang, H., Wang, X., & Wang, S. (2013). Insight into the dynamic interaction between different flavonoids and bovine serum albumin using molecular dynamics simulations and free energy calculations. Journal of Molecular Modeling, 19(3), 1039–1047. https://doi.org/10.1007/s00894-012-1649-z
  • Palko, N., Grishina, M., & Potemkin, V. (2021). Electron density analysis of SARS‐CoV‐2 RNA‐dependent RNA polymerase complexes. Molecules, 26(13), 3960. https://doi.org/10.3390/molecules26133960
  • Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. Oxford University Press.
  • Peters, T. (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245.
  • Peters, T. (1995). All about albumin: Biochemistry genetics and medical applications. Academic Press.
  • Petsko, G. A. (2010). When failure should be the option. BMC Biology, 8(1), 6. https://doi.org/10.1186/1741-7007-8-61
  • Politzer, P., Murray, J. S., & Peralta‐Inga, Z. (2001). Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. International Journal of Quantum Chemistry, 85(6), 676–684. https://doi.org/10.1002/qua.1706
  • Polshettiwar, V., & Varma, R. S. (2008). Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure and Applied Chemistry, 80(4), 777–790. https://doi.org/10.1351/pac200880040777
  • Popelier, P. L. A. (2000a). Atoms in molecules: An introduction. Prentice Hall.
  • Popelier, P. L. A. (2000b). On the full topology of the Laplacian of the electron density. Coordination Chemistry Reviews, 197(1), 169–189. https://doi.org/10.1016/S0010-8545(99)00189-7
  • Popelier, P. L. A., Devereux, M., & Rafat, M. (2004). The quantum topological electrostatic potential as a probe for functional group transferability. Acta Crystallographica Section A, Foundations of Crystallography, 60(Pt 5), 427–433. https://doi.org/10.1107/S0108767304016228
  • Potemkin, V., & Grishina, M. (2021). The complementarity principle—One more step towards analytical docking on the example of dihydrofolate reductase complexes. Life, 11(9), 983. https://doi.org/10.3390/life11090983
  • Prichard, M. N., & Shipman, C. (1995). Ribonucleotide reductase: An important enzyme in the replication of herpes simplex virus type 1 and a target for antiviral chemotherapy. Chemotherapy, 41(5), 384–395. https://doi.org/10.1159/000239371
  • Rajalakshmi, G., Hathwar, V. R., & Kumaradhas, P. (2014a). Intermolecular interactions, charge‐density distribution and the electrostatic properties of pyrazinamide anti‐TB drug molecule: An experimental and theoretical charge‐density study. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 70(Pt 3), 568–579. https://doi.org/10.1107/S205252061303388X
  • Rajalakshmi, G., Hathwar, V. R., & Kumaradhas, P. (2014b). Topological analysis of electron density and the electrostatic properties of isoniazid: An experimental and theoretical study. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 70(Pt 2), 331–341. https://doi.org/10.1107/S2052520613033209
  • Rajalakshmi, G., Pavan, M. S., & Kumaradhas, P. (2014c). Charge density distribution and electrostatic interactions of ethionamide: An inhibitor of the enoyl acyl carrier protein reductase (inhA) enzyme of Mycobacterium tuberculosis. RSC Advances, 4(101), 57823–57833. https://doi.org/10.1039/C4RA07953A
  • Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., Gopas, J., & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica Chimica Acta; International Journal of Clinical Chemistry, 436(436), 332–347. https://doi.org/10.1016/j.cca.2014.06.004
  • Rebecca, R.-K., & Eva, S.-M. (1996). Quantitative optical spectroscopy for tissue diagnosis. Annual Review of Physical Chemistry, 47, 555–606.
  • Reis, E. F., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., Lobato, Z. I. P., & Mansur, H. S. (2006). Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research, 9(2), 185–191. https://doi.org/10.1590/S1516-14392006000200014
  • Rimac, H., Grishina, M. A., & Potemkin, V. A. (2020). Electron density analysis of CDK complexes using the AlteQ method. Future Medicinal Chemistry, 12(15), 1387–1397. https://doi.org/10.4155/fmc-2020-0076
  • Rimac, H., Grishina, M., & Potemkin, V. (2021). Use of the complementarity principle in docking procedures: A new approach for evaluating the correctness of binding poses. Journal of Chemical Information and Modeling, 61(4), 1801–1813. https://doi.org/10.1021/acs.jcim.0c01382
  • Saleh, G., Lo Presti, L., Gatti, C., & Ceresoli, D. (2013). NCImilano: An electron-density-based code for the study of noncovalent interactions. Journal of Applied Crystallography, 46(5), 1513–1517. https://doi.org/10.1107/S0021889813020098
  • Saravanan, K. (2021). QM/MM-based charge density analysis of protein-ligand complexes: Towards medicinal chemistry and drug design perspective. Acta Crystallographica Section A Foundations and Advances, 77(a2), C911–C911. https://doi.org/10.1107/S0108767321087882
  • Saravanan, K., Hunday, G., & Kumaradhas, P. (2020). Binding and stability of indirubin-3-monoxime in the GSK3β enzyme: A molecular dynamics simulation and binding free energy study. Journal of Biomolecular Structure & Dynamics, 38(4), 957–974. https://doi.org/10.1080/07391102.2019.1591301
  • Saravanan, K., Kalaiarasi, C., & Kumaradhas, P. (2017). Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis. Journal of Biomolecular Structure & Dynamics, 35(16), 3627–3647. https://doi.org/10.1080/07391102.2016.1264891
  • Saravanan, K., Karthikeyan, S., Sugarthi, S., & Stephen, A. D. (2021). Binding studies of known molecules with acetylcholinesterase and bovine serum albumin: A comparative view. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 259, 119856. https://doi.org/10.1016/j.saa.2021.119856
  • Saravanan, K., & Kumaradhas, P. (2019). Acylguanidine-BACE1 complex: Insights of intermolecular interactions and dynamics. Journal of Theoretical Biology, 464, 33–49. https://doi.org/10.1016/j.jtbi.2018.12.020
  • Saravanan, K., Sivanandam, M., Hunday, G., Mathiyalagan, L., & Kumaradhas, P. (2019). Investigation of intermolecular interactions and stability of verubecestat in the active site of BACE1: Development of first model from QM/MM-based charge density and MD analysis. Journal of Biomolecular Structure & Dynamics, 37(9), 2339–2354. https://doi.org/10.1080/07391102.2018.1479661
  • Saravanan, K., Sivanandam, M., Hunday, G., Pavan, M. S., & Kumaradhas, P. (2019). Exploring the different environments effect of piperine via combined crystallographic, QM/MM and molecular dynamics simulation study. Journal of Molecular Graphics & Modelling, 92, 280–295. https://doi.org/10.1016/j.jmgm.2019.07.019
  • Senn, H. M., & Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie (International ed. in English), 48(7), 1198–1229. https://doi.org/10.1002/anie.200802019
  • Singh, D., Aggarwal, S., Singh, V. K., Pratap, R., Mishra, A. K., Tiwari., & A. K., Pooja. (2021). Lanthanide (Ln3+) complexes of bifunctional chelate: Synthesis, physicochemical study and interaction with human serum albumin (HSA. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 244(118808), 118808. https://doi.org/10.1016/j.saa.2020.118808
  • Singh, D., Kaur, L., Rahman, A. J., Singh, P., Tiwari, A. K., & Ojha, H. (2022). Binding and mechanistic studies of 5-HT7 specific benzothiazolone derivatives with bovine serum albumin: Spectroscopic and in silico studies. Journal of Molecular Liquids, 366, 120143. arthttps://doi.org/10.1016/j.molliq.2022.120143
  • Sperry, J. B., & Wright, D. L. (2005). Furans, thiophenes and related heterocycles in drug discovery. Current Opinion in Drug Discovery & Development, 8 6, 723–740.
  • Sun, S.-F., Zhou, B., Hou, H.-N., Liu, Y., & Xiang, G.-Y. (2006). Studies on the interaction between oxaprozin-E and bovine serum albumin by spectroscopic methods. International Journal of Biological Macromolecules, 39(4-5), 197–200. https://doi.org/10.1016/j.ijbiomac.2006.03.020
  • Sun, F., Zong, W., Liu, R., Chai, J., & Liu, Y. (2010). Micro-environmental influences on the fluorescence of tryptophan. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 76(2), 142–145. https://doi.org/10.1016/j.saa.2010.03.002
  • Tabassum, S., Al-Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Synthesis characterization and interaction studies of copper based drug with human serum albumin (HSA): Spectroscopic and molecular docking investigation. Journal of Photochemistry and Photobiology B, Biology, 114, 132–139. https://doi.org/10.1016/j.jphotobiol.2012.05.021
  • Tang, J., Luan, F., & Chen, F. (2006). Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy FTIR and molecular modeling. Bioorganic & Medicinal Chemistry, 14(9), 3210–3217. https://doi.org/10.1016/j.bmc.2005.12.034
  • Tasi, G., Pálinkó, I., Nyerges, L., Fejes, P., & Foerster, H. (1993). Calculation of electrostatic potential maps and atomic charges for large molecules. Journal of Chemical Information and Computer Sciences, 33(3), 296–299. https://doi.org/10.1021/ci00013a003
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D., & Spackman, M. (2017). CrystalExplorer17. The University of Western Australia Australia.
  • Valeur, B., & Brochon, J. C. (1999). New trends in fluorescence spectroscopy (6th ed.). Springer Press.
  • Valverde, M. G., & Torroba, T. (2005). Sulfur-nitrogen heterocycles. Molecules, 10(2), 318–320. https://doi.org/10.3390/10020318
  • Van der Kamp, M. W., & Mulholland, A. J. (2013). Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry, 52(16), 2708–2728. https://doi.org/10.1021/bi400215w
  • Verma, P., Kaur, L., Aswal, P., Singh, A., Ojha, H., Rahman, A. J., Singhal, R., Tiwari, A. K., & Pathak, M. (2022). Luminescence studies of binding affinity of vildagliptin with bovine serum albumin. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2022.2043939
  • Wang, Q., Huang, C.-R., Jiang, M., Zhu, Y.-Y., Wang, J., Chen, J., & Shi, J.-H. (2016). Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 156, 155–163. https://doi.org/10.1016/j.saa.2015.12.003
  • Zamboni, W. C., Anil, T., Patri, K., Hrkach, J., Stern, S., Lee, R., Nicholas, A. N., Panaro, J., & Grodzinski, P. (2012). Best practices in cancer nanotechnology: Perspective from NCI nanotechnology alliance. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18(12), 3229–3241. https://doi.org/10.1158/1078-0432.CCR-11-2938
  • Zhang, G., Wang, L., & Pan, J. (2012). Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. Journal of Agricultural and Food Chemistry, 60(10), 2721–2729. https://doi.org/10.1021/jf205260g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.