204
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural insight into TIPE1 functioning as a lipid transfer protein

, , , &
Pages 14049-14062 | Received 28 Nov 2022, Accepted 30 Jan 2023, Published online: 10 Mar 2023

References

  • Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., & Zwart, P. H. (2010). PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography, 66(2), 213–221. https://doi.org/10.1107/S0907444909052925
  • Bordoloi, D., Padmavathi, G., Banik, K., Devi, K. A., Harsha, C., Girisa, S., Buhrmann, C., Shakibaei, M., & Kunnumakkara, A. B. (2021). Human tumor necrosis factor alpha-induced protein eight-like 1 exhibited potent anti-tumor effect through modulation of proliferation, survival, migration and invasion of lung cancer cells. Molecular and Cellular Biochemistry, 476(9), 3303–3318. https://doi.org/10.1007/s11010-021-04060-1
  • Bunney, T. D., & Katan, M. (2010). Phosphoinositide signalling in cancer: Beyond PI3K and PTEN. Nature Reviews Cancer, 10(5), 342–352. https://doi.org/10.1038/nrc2842
  • Cao, X. L., Zhang, L., Shi, Y. Y., Sun, Y., Dai, S., Guo, C., Zhu, F. L., Wang, Q., Wang, J. N., Wang, X. Y., Chen, Y. H. H., & Zhang, L. N. (2013). Human tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 suppresses hepatocellular carcinoma metastasis through inhibiting Rac1. Molecular Cancer, 12(1), 1–10. https://doi.org/10.1186/1476-4598-12-149
  • Carnero, A., & Paramio, J. M. (2014). The PTEN/PI3K/AKT pathway in vivo, cancer mouse models. Frontiers in Oncology, 4, 252. https://doi.org/10.3389/fonc.2014.00252
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chen, P., Zhou, J., Li, J., Zhang, Q., & Zuo, Q. (2019). TIPE1 suppresses osteosarcoma tumor growth by regulating macrophage infiltration. Clinical and Translational Oncology, 21(3), 334–341. https://doi.org/10.1007/s12094-018-1927-z
  • Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography, 66(1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Cheng, Y., Bai, F. X., Ren, X. L., Sun, R. H., Guo, X. W., Liu, W., Wang, B., Yang, Y. H., Zhang, X. L., Xu, Y., Li, C. Y., Yang, X. Y., Gao, L. F., Ma, C. H., Li, X. E., & Liang, X. H. (2022). Phosphoinositide-binding protein TIPE1 promotes alternative activation of macrophages and tumor progression via PIP3/Akt/TGFb axis. Cancer Research, 82(8), 1603–1616. https://doi.org/10.1158/0008-5472.CAN-21-0003
  • Cherfils, J., & Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiological Reviews, 93(1), 269–309. https://doi.org/10.1152/physrev.00003.2012
  • Cui, J., Zhang, G., Hao, C., Wang, Y., Lou, Y., Zhang, W., Wang, J., & Liu, S. (2011). The expression of TIPE1 in murine tissues and human cell lines. Molecular Immunology, 48(12–13), 1548–1555. https://doi.org/10.1016/j.molimm.2011.04.023
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35, W522–W525. https://doi.org/10.1093/nar/gkm276
  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(12), 2126–2132. https://doi.org/10.1107/S0907444904019158
  • Fayngerts, S. A., Wang, Z. J., Zamani, A., Sun, H. H., Boggs, A. E., Porturas, T. P., Xie, W. D., Lin, M., Cathopoulis, T., Goldsmith, J. R., Vourekas, A., & Chen, Y. H. H. (2017). Direction of leukocyte polarization and migration by the phosphoinositide-transfer protein TIPE2. Nature Immunology, 18(12), 1353–1360. https://doi.org/10.1038/ni.3866
  • Fayngerts, S. A., Wu, J., Oxley, C. L., Liu, X., Vourekas, A., Cathopoulis, T., Wang, Z., Cui, J., Liu, S., Sun, H., Lemmon, M. A., Zhang, L., Shi, Y., & Chen, Y. H. (2014). TIPE3 is the transfer protein of lipid second messengers that promote cancer. Cancer Cell, 26(4), 465–478. https://doi.org/10.1016/j.ccr.2014.07.025
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Gus-Brautbar, Y., Johnson, D., Zhang, L., Sun, H., Wang, P., Zhang, S., Zhang, L., & Chen, Y. H. (2012). The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Molecular Cell, 45(5), 610–618. https://doi.org/10.1016/j.molcel.2012.01.006
  • Ha, J. Y., Kim, J. S., Kang, Y. H., Bok, E., Kim, Y. S., & Son, J. H. (2014). Tnfaip8 l1/Oxi-beta binds to FBXW5, increasing autophagy through activation of TSC2 in a Parkinson’s disease model. Journal of Neurochemistry, 129(3), 527–538. https://doi.org/10.1111/jnc.12643
  • Hu, W., Feng, C. M., Liu, L. Y., Li, N., Tian, F., Du, J. X., Zhao, Y., Xiang, X. X., Liu, K., & Zhao, P. Q. (2019). TIPE1 inhibits breast cancer proliferation by downregulating ERK phosphorylation and predicts a favorable prognosis. Frontiers in Oncology, 9, 400. https://doi.org/10.3389/fonc.2019.00400
  • Jiang, H., Zhang, X. Y., Chen, X., Aramsangtienchai, P., Tong, Z., & Lin, H. N. (2018). Protein lipidation: Occurrence, mechanisms, biological functions, and enabling technologies. Chemical Reviews, 118(3), 919–988. https://doi.org/10.1021/acs.chemrev.6b00750
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kalogriopoulos, N. A., Rees, S. D., Ngo, T., Kopcho, N. J., Ilatovskiy, A. V., Sun, N., Komives, E. A., Chang, G., Ghosh, P., & Kufareva, I. (2019). Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proceedings of the National Academy of Sciences, 116(33), 16394–16403. https://doi.org/10.1073/pnas.1906658116
  • Kim, J. S., Park, J., Kim, M. S., Ha, J. Y., Jang, Y. W., Shin, D. H., & Son, J. H. (2017). The Tnfaip8-PE complex is a novel upstream effector in the anti-autophagic action of insulin. Scientific Reports, 7(1), 6248. https://doi.org/10.1038/s41598-017-06576-3
  • Kumar, D., Gokhale, P., Broustas, C., Chakravarty, D., Ahmad, I., & Kasid, U. (2004). Expression of SCC-S2, an antiapoptotic molecule, correlates with enhanced proliferation and tumorigenicity of MDA-MB 435 cells. Oncogene, 23(2), 612–616. https://doi.org/10.1038/sj.onc.1207123
  • Laliberte, B., Wilson, A. M., Nafisi, H., Mao, H., Zhou, Y. Y., Daigle, M., & Albert, P. R. (2010). TNFAIP8: A new effector for Galpha(i) coupling to reduce cell death and induce cell transformation. Journal of Cellular Physiology, 225(3), 865–874. https://doi.org/10.1002/jcp.22297
  • Lee, D., Kim, M. S., Park, J., Jhon, G. J., Son, J. H., & Shin, D. H. (2014). A preliminary X-ray study of murine Tnfaip8/Oxi-alpha. International Journal of Molecular Sciences, 15(3), 4523–4530. https://doi.org/10.3390/ijms15034523
  • Leyme, A., Marivin, A., Maziarz, M., DiGiacomo, V., Papakonstantinou, M. P., Patel, P. P., Blanco-Canosa, J. B., Walawalkar, I. A., Rodriguez-Davila, G., Dominguez, I., & Garcia-Marcos, M. (2017). Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proceedings of the National Academy of Sciences of the United States of America, 114(48), E10319–E10328. https://doi.org/10.1073/pnas.1707992114
  • Li, T., Jia, L., Deng, Y., Wang, B., & Quan, S. (2020). TIPE1 impairs ovarian tumor growth by promoting caspase-dependent apoptosis. Oncology Letters, 20(6), 365. https://doi.org/10.3892/ol.2020.12227
  • Liu, W., Chen, Y., Xie, H., Guo, Y., Ren, D., Li, Y., Jing, X., Li, D., Wang, X., Zhao, M., Zhu, T., Wang, Z., Wei, X., Gao, F., Wang, X., Liu, S., Zhang, Y., & Yi, F. (2018). TIPE1 suppresses invasion and migration through down-regulating Wnt/beta-catenin pathway in gastric cancer. Journal of Cellular and Molecular Medicine. 22(2), 1103–1117. https://doi.org/10.1111/jcmm.13362
  • Liu, Y., Qi, X., Zhao, Z., Song, D., Wang, L., Zhai, Q., Zhang, X., Zhao, P., & Xiang, X. (2020). TIPE1-mediated autophagy suppression promotes nasopharyngeal carcinoma cell proliferation via the AMPK/mTOR signalling pathway. Journal of Cellular and Molecular Medicine, 24(16), 9135–9144. https://doi.org/10.1111/jcmm.15550
  • Lou, Y., & Liu, S. (2011). The TIPE (TNFAIP8) family in inflammation, immunity, and cancer. Molecular Immunology, 49(1–2), 4–7. https://doi.org/10.1016/j.molimm.2011.08.006
  • Luan, Y. Y., Zhang, L., Zhu, F. J., Dong, N., Lu, J. Y., & Yao, Y. M. (2019). Effect of TIPE1 on immune function of dendritic cells and its signaling pathway in septic mice. The Journal of Infectious Diseases, 220(4), 699–709. https://doi.org/10.1093/infdis/jiz158
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1
  • Miyagawa, T., Koteishi, H., Kamimura, Y., Miyanaga, Y., Takeshita, K., Nakagawa, A., & Ueda, M. (2018). Structural basis of Gip1 for cytosolic sequestration of G protein in wide-range chemotaxis. Nature Communications, 9(1), 4635. https://doi.org/10.1038/s41467-018-07035-x
  • Padmavathi, G., Banik, K., Monisha, J., Bordoloi, D., Shabnam, B., Arfuso, F., Sethi, G., Fan, L., & Kunnumakkara, A. B. (2018). Novel tumor necrosis factor-alpha induced protein eight (TNFAIP8/TIPE) family: Functions and downstream targets involved in cancer progression. Cancer Letters, 432, 260–271. https://doi.org/10.1016/j.canlet.2018.06.017
  • Padmavathi, G., Monisha, J., Bordoloi, D., Banik, K., Roy, N. K., Girisa, S., Singh, A. K., Longkumer, I., Baruah, M. N., & Kunnumakkara, A. B. (2021). Tumor necrosis factor-alpha induced protein 8 (TNFAIP8/TIPE) family is differentially expressed in oral cancer and regulates tumorigenesis through Akt/mTOR/STAT3 signaling cascade. Life Sciences. 287, 120118. https://doi.org/10.1016/j.lfs.2021.120118
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Qiu, S., Hu, W., Ma, Q., Zhao, Y., Li, L., & Ding, Y. (2019). TIPE1 suppresses the invasion and migration of breast cancer cells and inhibits epithelial-to-mesenchymal transition primarily via the ERK signaling pathway. Acta Biochimica et Biophysica Sinica, 51(10), 1008–1015. https://doi.org/10.1093/abbs/gmz099
  • Shao, J., Li, Y., Zhou, C., Geng, M., Zhang, G., Zhang, N., Jin, G., Zhang, L., Gao, C., & Liu, S. (2020). TIPE1 accelerates atherogenesis by inducing endothelial dysfunction in response to oxidative stress. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866(1), 165578. https://doi.org/10.1016/j.bbadis.2019.165578
  • Sun, H., Gong, S., Carmody, R. J., Hilliard, A., Li, L., Sun, J., Kong, L., Xu, L., Hilliard, B., Hu, S., Shen, H., Yang, X., & Chen, Y. H. (2008). TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell, 133(3), 415–426. https://doi.org/10.1016/j.cell.2008.03.026
  • Syrovatkina, V., Alegre, K. O., Dey, R., & Huang, X. Y. (2016). Regulation, signaling, and physiological functions of G-proteins. Journal of Molecular Biology, 428(19), 3850–3868. https://doi.org/10.1016/j.jmb.2016.08.002
  • Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M., & Bilanges, B. (2010). The emerging mechanisms of isoform-specific PI3K signalling. Nature Reviews Molecular Cell Biology. 11(5), 329–341. https://doi.org/10.1038/nrm2882
  • Villaseca, S., Romero, G., Ruiz, M. J., Perez, C., Leal, J. I., Tovar, L. M., & Torrejon, M. (2022). Galphai protein subunit: A step toward understanding its non-canonical mechanisms. Frontiers in Cell and Developmental Biology. 10, 941870. https://doi.org/10.3389/fcell.2022.941870
  • Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, Y., Liu, Y., Hu, C., Ni, X., & Huang, X. (2016). Tumor necrosis factor alpha-induced protein 8-like 1 promotes apoptosis by regulating B-cell leukemia/lymphoma-2 family proteins in RAW264.7 cells. Oncology Letters, 12(5), 3506–3512. https://doi.org/10.3892/ol.2016.5090
  • Wang, Z. J., Fayngerts, S., Wang, P., Sun, H. H., Johnson, D. S., Ruan, Q. G., Guo, W., & Chen, Y. H. H. (2012). TIPE2 protein serves as a negative regulator of phagocytosis and oxidative burst during infection. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15413–15418. https://doi.org/10.1073/pnas.1204525109
  • Wauson, E. M., Dbouk, H. A., Ghosh, A. B., & Cobb, M. H. (2014). G protein-coupled receptors and the regulation of autophagy. Trends in Endocrinology and Metabolism, 25(5), 274–282. https://doi.org/10.1016/j.tem.2014.03.006
  • Wu, H., Xu, X., Zheng, A., Wang, W., Mei, L., Chen, Y., Sun, S., Jiang, L., Wu, Y., Zhou, Y., Zheng, M., & Chen, Q. (2021). TNF-alpha-induce protein 8-like 1 inhibits hepatic steatosis, inflammation, and fibrosis by suppressing polyubiquitination of apoptosis signal-regulating kinase 1. Hepatology, 74(3), 1251–1270. https://doi.org/10.1002/hep.31801
  • Wu, X. C., Ma, Y. M., Cheng, J., Li, X., Zheng, H., Jiang, L., & Zhou, R. J. (2017). TIPE1 function as a prognosis predictor and negative regulator of lung cancer. Oncotarget, 8(45), 78496–78506. https://doi.org/10.18632/oncotarget.19655
  • Xi, W., Hu, Y., Liu, Y., Zhang, J., Wang, L., Lou, Y., Qu, Z., Cui, J., Zhang, G., Liang, X., Ma, C., Gao, C., Chen, Y., & Liu, S. (2011). Roles of TIPE2 in hepatitis B virus-induced hepatic inflammation in humans and mice. Molecular Immunology, 48(9), 1203–1208. https://doi.org/10.1016/j.molimm.2011.03.002
  • Ye, T., Yang, B., Wang, C., Su, C., Luo, J., Yang, X., Yu, H., Yuan, Z., Meng, Z., & Xia, J. (2020). TIPE1 impairs stemness maintenance in colorectal cancer through directly targeting beta-catenin. Carcinogenesis, 41(1), 25–35. https://doi.org/10.1093/carcin/bgz079
  • You, Z. B., Ouyang, H., Lopatin, D., Polver, P. J., & Wang, C. Y. (2001). Nuclear factor-kappa B-inducible death effector domain-containing protein suppresses tumor necrosis factor-mediated apoptosis by inhibiting caspase-8 activity. Journal of Biological Chemistry, 276(28), 26398–26404. https://doi.org/10.1074/jbc.M102464200
  • Zhang, X., Wang, J., Fan, C., Li, H., Sun, H., Gong, S., Chen, Y. H., & Shi, Y. (2009). Crystal structure of TIPE2 provides insights into immune homeostasis. Nature Structural & Molecular Biology, 16(1), 89–90. https://doi.org/10.1038/nsmb.1522
  • Zhang, Z., Chang, M., Song, X., Wang, K., Sun, W., Ma, H., Yan, X., Sun, Y., Song, X., & Xie, L. (2021). TIPE1 suppresses growth and metastasis of ovarian cancer. Journal of Oncology, 2021, 5538911. https://doi.org/10.1155/2021/5538911
  • Zhao, P., Pang, X., Jiang, J., Wang, L., Zhu, X., Yin, Y., Zhai, Q., Xiang, X., Feng, F., & Xu, W. (2019). TIPE1 promotes cervical cancer progression by repression of p53 acetylation and is associated with poor cervical cancer outcome. Carcinogenesis, 40(4), 592–599. https://doi.org/10.1093/carcin/bgy163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.