286
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

SARS-CoV-2 envelope protein attain Kac mediated dynamical interaction network to adopt ‘histone mimic’ at BRD4 interface

SARS-CoV-2 hijacking the human transcriptional machinery – a mechanistic elucidation

, , ORCID Icon &
Pages 15305-15319 | Received 24 Nov 2022, Accepted 27 Feb 2023, Published online: 12 Mar 2023

References

  • Agrahari, A. K., Kumar, A., Siva, R., Zayed, H., & George Priya Doss, C. (2018). Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot-Marie-tooth disease: A computational study. Journal of Theoretical Biology, 437, 305–317. https://doi.org/10.1016/J.JTBI.2017.10.028
  • Agrahari, A. K., Pieroni, E., Gatto, G., & Kumar, A. (2019). The impact of missense mutation in PIGA associated to paroxysmal nocturnal hemoglobinuria and multiple congenital anomalies-hypotonia-seizures syndrome 2: A computational study. Heliyon, 5(10), e02709. https://doi.org/10.1016/J.HELIYON.2019.E02709
  • Agrahari, A. K., Sneha, P., George Priya Doss, C., Siva, R., & Zayed, H. (2018). A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metabolic Brain Disease, 33(2), 589–600. https://doi.org/10.1007/S11011-017-0121-2
  • Bredenbeek, P. J., Kooi, E. A., Lindenbach, B., Huijkman, N., Rice, C. M., & Spaan, W. J. M. (2003). A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. The Journal of General Virology, 84(Pt 5), 1261–1268. https://doi.org/10.1099/VIR.0.18860-0
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/JCC.20290
  • Chen, I. P., Longbotham, J. E., McMahon, S., Suryawanshi, R. K., Khalid, M. M., Taha, T. Y., Tabata, T., Hayashi, J. M., Soveg, F. W., Carlson-Stevermer, J., Gupta, M., Zhang, M. Y., Lam, V. L., Li, Y., Yu, Z., Titus, E. W., Diallo, A., Oki, J., Holden, K., … Ott, M. (2022). Viral E protein neutralizes BET protein-mediated post-entry antagonism of SARS-CoV-2. Cell Reports, 40(3), 111088. https://doi.org/10.1016/j.celrep.2022.111088
  • Davey, N. E., van Roey, K., Weatheritt, R. J., Toedt, G., Uyar, B., Altenberg, B., Budd, A., Diella, F., Dinkel, H., & Gibson, T. J. (2011). Attributes of short linear motifs. Molecular BioSystems, 8(1), 268–281. https://doi.org/10.1039/C1MB05231D
  • Durrant, J. D., Votapka, L., Sørensen, J., & Amaro, R. E. (2014). POVME 2.0: An enhanced tool for determining pocket shape and volume characteristics. Journal of Chemical Theory and Computation, 10(11), 5047–5056. https://doi.org/10.1021/CT500381C/SUPPL_FILE/CT500381C_SI_002.PDF
  • Elde, N. C., & Malik, H. S. (2009). The evolutionary conundrum of pathogen mimicry. Nature Reviews. Microbiology, 7(11), 787–797. https://doi.org/10.1038/NRMICRO2222
  • Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J. P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Müller, S., Pawson, T., Gingras, A. C., Arrowsmith, C. H., & Knapp, S. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 149(1), 214–231. https://doi.org/10.1016/J.CELL.2012.02.013
  • García-Sastre, A., & Biron, C. A. (2006). Type 1 interferons and the virus-host relationship: A lesson in détente. Science (New York, N.Y.), 312(5775), 879–882. https://doi.org/10.1126/SCIENCE.1125676
  • Gebhardt, J. C. M., Suter, D. M., Roy, R., Zhao, Z. W., Chapman, A. R., Basu, S., Maniatis, T., & Xie, X. S. (2013). Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nature Methods, 10(5), 421–426. https://doi.org/10.1038/NMETH.2411
  • Gerstein, M., & Echols, N. (2004). Exploring the range of protein flexibility, from a structural proteomics perspective. Current Opinion in Chemical Biology, 8(1), 14–19. https://doi.org/10.1016/j.cbpa.2003.12.006
  • Gilan, O., Rioja, I., Knezevic, K., Bell, M. J., Yeung, M. M., Harker, N. R., Lam, E. Y. N., Chung, C., Bamborough, P., Petretich, M., Urh, M., Atkinson, S. J., Bassil, A. K., Roberts, E. J., Vassiliadis, D., Burr, M. L., Preston, A. G. S., Wellaway, C., Werner, T., … Dawson, M. A. (2020). Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science, 368(6489), 387–394. https://doi.org/10.1126/SCIENCE.AAZ8455
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. https://doi.org/10.1093/BIOINFORMATICS/BTL461
  • Grant, B. J., Skjærven, L., & Yao, X. Q. (2021). The Bio3D packages for structural bioinformatics. Protein Science : A Publication of the Protein Society, 30(1), 20. https://doi.org/10.1002/PRO.3923
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Katze, M. G., He, Y., & Gale, M. (2002). Viruses and interferon: A fight for supremacy. Nature Reviews. Immunology, 2(9), 675–687. https://doi.org/10.1038/NRI888
  • Kirchner, B., & Seitsonen, A. P. (2008). Green chemistry from supercomputers: Car-parrinello simulations of emim-chloroaluminates ionic liquids. High Performance Computing on Vector Systems, 2007, 213–227. https://doi.org/10.1007/978-3-540-74384-2_16/COVER
  • Kumar, A., Melis, P., Genna, V., Cocco, E., Marrosu, M. G., & Pieroni, E. (2014). Antigenic peptide molecular recognition by the DRB1–DQB1 haplotype modulates multiple sclerosis susceptibility. Molecular BioSystems, 10(8), 2043–2054. https://doi.org/10.1039/C4MB00203B
  • Kumar, A., Sechi, L. A., Caboni, P., Marrosu, M. G., Atzori, L., & Pieroni, E. (2015). Dynamical insights into the differential characteristics of Mycobacterium avium subsp. paratuberculosis peptide binding to HLA-DRB1 proteins associated with multiple sclerosis. New Journal of Chemistry, 39(2), 1355–1366. https://doi.org/10.1039/C4NJ01903B
  • Lambert, J. P., Picaud, S., Fujisawa, T., Hou, H., Savitsky, P., Uusküla-Reimand, L., Gupta, G. D., Abdouni, H., Lin, Z. Y., Tucholska, M., Knight, J. D. R., Gonzalez-Badillo, B., St-Denis, N., Newman, J. A., Stucki, M., Pelletier, L., Bandeira, N., Wilson, M. D., Filippakopoulos, P., & Gingras, A. C. (2019). Interactome rewiring following pharmacological targeting of BET bromodomains. Molecular Cell, 73(3), 621–638.e17. https://doi.org/10.1016/J.MOLCEL.2018.11.006
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/ACS.JCTC.5B00255/SUPPL_FILE/CT5B00255_SI_001.PDF
  • Marazzi, I., Ho, J. S. Y., Kim, J., Manicassamy, B., Dewell, S., Albrecht, R. A., Seibert, C. W., Schaefer, U., Jeffrey, K. L., Prinjha, R. K., Lee, K., García-Sastre, A., Roeder, R. G., & Tarakhovsky, A. (2012). Suppression of the antiviral response by an influenza histone mimic. Nature, 483(7390), 428–433. https://doi.org/10.1038/NATURE10892
  • Marmorstein, R., & Zhou, M. M. (2014). Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harbor Perspectives in Biology, 6(7), a018762. https://doi.org/10.1101/CSHPERSPECT.A018762
  • Miller, T. C. R., Simon, B., Rybin, V., Grötsch, H., Curtet, S., Khochbin, S., Carlomagno, T., & Müller, C. W. (2016). A bromodomain-DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT. Nature Communications, 7(1), 13855. https://doi.org/10.1038/NCOMMS13855
  • Mittal, L., Srivastava, M., Kumari, A., Tonk, R. K., Awasthi, A., & Asthana, S. (2021). Interplay among structural stability, plasticity, and energetics determined by conformational attuning of flexible loops in PD-1. Journal of Chemical Information and Modeling, 61(1), 358–384. https://doi.org/10.1021/ACS.JCIM.0C01080
  • Mittal, L., Tonk, R., Awasthi, A., & Asthana, S. (2022). Traversing through the dynamic protein-protein interaction landscape and conformational plasticity of PD-1 for small-molecule discovery. Journal of Medicinal Chemistry, 65(8), 5941–5953. https://doi.org/10.1021/ACS.JMEDCHEM.2C00176
  • Mondino, S., Schmidt, S., & Buchrieser, C. (2020). Molecular mimicry: A paradigm of host-microbe coevolution illustrated by Legionella. MBio, 11(5), 1–19. https://doi.org/10.1128/MBIO.01201-20
  • Mourao, D., Chen, S., Schaefer, U., Bozzacco, L., Carneiro, L. A., Gerber, A., Adura, C., Dill, B. D., Molina, H., Carroll, T., Paul, M., Bhanu, N., V., Garcia, B. A., Joberty, G., Rioja, I., Prinjha, R. K., Roeder, R. G., Rice, C. M., MacDonald, M. R., …Tarakhovsky, A. (2020). A histone-like motif in yellow fever virus contributes to viral replication. BioRxiv, 2020. https://doi.org/10.1101/2020.05.05.078782
  • Pallara, C., Jiménez-García, B., Romero, M., Moal, I. H., & Fernández-Recio, J. (2017). pyDock scoring for the new modeling challenges in docking: Protein-peptide, homo-multimers, and domain-domain interactions. Proteins, 85(3), 487–496. https://doi.org/10.1002/PROT.25184
  • Qin, S., Liu, Y., Tempel, W., Eram, M. S., Bian, C., Liu, K., Senisterra, G., Crombet, L., Vedadi, M., & Min, J. (2014). Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1. Nature Communications, 5(1), 3952. https://doi.org/10.1038/NCOMMS4952
  • Ruthenburg, A. J., Li, H., Patel, D. J., & David Allis, C. (2007). Multivalent engagement of chromatin modifications by linked binding modules. Nature Reviews. Molecular Cell Biology, 8(12), 983–994. https://doi.org/10.1038/NRM2298
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/WCMS.1121
  • Schaefer, U., Ho, J. S. Y., Prinjha, R. K., & Tarakhovsky, A. (2013). The “histone mimicry” by pathogens. Cold Spring Harbor Symposia on Quantitative Biology, 78(1), 81. https://doi.org/10.1101/SQB.2013.78.020339
  • Singh, M., Srivastava, M., Wakode, S. R., & Asthana, S. (2021). Elucidation of structural determinants delineates the residues playing key roles in differential dynamics and selective inhibition of sirt1-3. Journal of Chemical Information and Modeling, 61(3), 1105–1124. https://doi.org/10.1021/ACS.JCIM.0C01193
  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A., & Sansom, M. S. P. (1996). HOLE: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics, 14(6), 354–360. https://doi.org/10.1016/S0263-7855(97)00009-X
  • Smock, R. G., & Gierasch, L. M. (2009). Sending signals dynamically. Science (New York, N.Y.), 324(5924), 198–203. https://doi.org/10.1126/SCIENCE.1169377
  • Srivastava, M., Mittal, L., Kumari, A., Agrahari, A. K., Singh, M., Mathur, R., & Asthana, S. (2022). Characterizing (un)binding mechanism of USP7 inhibitors to unravel the cause of enhanced binding potencies at allosteric checkpoint. Protein Science, 31(9), e4398. https://doi.org/10.1002/PRO.4398
  • Stein, A., Pache, R. A., Bernadó, P., Pons, M., & Aloy, P. (2009). Dynamic interactions of proteins in complex networks: A more structured view. The FEBS Journal, 276(19), 5390–5405. https://doi.org/10.1111/J.1742-4658.2009.07251.X
  • Tarakhovsky, A. (2013). Logic of the inflammation-associated transcriptional response. Advances in Immunology, 119, 107–133. https://doi.org/10.1016/B978-0-12-407707-2.00004-7
  • Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D., & Patel, D. J. (2007). How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Structural & Molecular Biology, 14(11), 1025–1040. https://doi.org/10.1038/NSMB1338
  • Torchala, M., Moal, I. H., Chaleil, R. A. G., Fernandez-Recio, J., & Bates, P. A. (2013). SwarmDock: A server for flexible protein–protein docking. Bioinformatics, 29(6), 807–809. https://doi.org/10.1093/BIOINFORMATICS/BTT038
  • van Roey, K., Dinkel, H., Weatheritt, R. J., Gibson, T. J., & Davey, N. E. (2013). The switches.ELM resource: A compendium of conditional regulatory interaction interfaces. Science Signaling, 6(269), rs7. https://doi.org/10.1126/SCISIGNAL.2003345/SUPPL_FILE/6_RS7_SM.PDF
  • Vann, K. R., Acharya, A., Jang, S. M., Lachance, C., Zandian, M., Holt, T. A., Smith, A. L., Pandey, K., Durden, D. L., El-Gamal, D., Côté, J., Byrareddy, S. N., & Kutateladze, T. G. (2022). Binding of the SARS-CoV-2 envelope E protein to human BRD4 is essential for infection. Structure, 30(9), 1224–1232.e5. https://doi.org/10.1016/j.str.2022.05.020
  • Xu, X., & Zou, X. (2020). MDockPeP: A web server for blind prediction of protein-peptide complex structures. Methods in Molecular Biology (Clifton, N.J.), 2165, 259–272. https://doi.org/10.1007/978-1-0716-0708-4_15
  • Yan, Y., Tao, H., He, J., & Huang, S. Y. (2020). The HDOCK server for integrated protein-protein docking. Nature Protocols, 15(5), 1829–1852. https://doi.org/10.1038/S41596-020-0312-X
  • Zhou, P., Jin, B., Li, H., & Huang, S. Y. (2018). HPEPDOCK: A web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Research, 46(W1), W443–W450. https://doi.org/10.1093/NAR/GKY357

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.