130
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Targeting bone cancer with 4-Allylbenzene-1,2-diol purified from Piper betle L.: an in silico and cytotoxicity scrutiny

, , , , , & show all
Pages 15446-15459 | Received 13 May 2022, Accepted 01 Mar 2023, Published online: 11 Mar 2023

References

  • Ali, A., Chong, C. H., Mah, S. H., Abdullah, L. C., Choong, T. S., & Chua, B. L. (2018). Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried Piper betle extracts. Molecules, 23(2), 484. https://doi.org/10.3390/molecules23020484
  • Ali, I., Khan, F. G., Suri, K. A., Gupta, B. D., Satti, N. K., Dutt, P., Afrin, F., Qazi, G. N., & Khan, I. A. (2010). In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Annals of Clinical Microbiology and Antimicrobials, 9, 7. https://doi.org/10.1186/1476-0711-9-7
  • Amalia, H., Sitompul, R., Hutauruk, J., & Andrianjah, I. A. M. (2009).Effectiveness of Piper betle leaf infusion as a palpebral skin antiseptic. Universa Medicina, 28(2), 83–91.
  • Amonkar, A. J., Nagabhushan, M., D'Souza, A. V., & Bhide, S. V. (1986). Hydroxychavicol: A new phenolic antimutagen from betel leaf. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 24(12), 1321–1324. https://doi.org/10.1016/0278-6915(86)90065-7
  • Bhattacharya, S., Banerjee, D., Bauri, A. K., Chattopadhyay, S., & Bandyopadhyay, K. (2007). Healing property of the Piper betel phenol, allylpyrocatechol against indomethacin-induced stomach ulceration and mechanism of action. World Journal of Gastroenterology, 13(27), 3705–3713. https://doi.org/10.3748/wjg.v13.i27.3705
  • Biermann, J. S., Chow, W., Reed, D. R., Lucas, D., Adkins, D. R., Agulnik, M., Benjamin, R. S., Brigman, B., Budd, G. T., Curry, W. T., Didwania, A., Fabbri, N., Hornicek, F. J., Kuechle, J. B., Lindskog, D., Mayerson, J., McGarry, S. V., Million, L., Morris, C. D., … Scavone, J. L. (2017). NCCN guidelines insights: Bone cancer, version 2.2017. Journal of the National Comprehensive Cancer Network : JNCCN, 15(2), 155–167. https://doi.org/10.6004/jnccn.2017.0017
  • Binkowski, T. A., Naghibzadeh, S., & Liang, J. (2003). CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Research, 31(13), 3352–3355. https://doi.org/10.1093/nar/gkg512
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., & Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. SC ‘06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. https://doi.org/10.1145/1188455.1188544
  • Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., Penfold, M. E., Sunshine, M. J., Littman, D. R., Kuo, C. J., Wei, K., McMaster, B. E., Wright, K., Howard, M. C., & Schall, T. J. (2006). A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203(9), 2201–2213. https://doi.org/10.1084/jem.20052144
  • Chakraborty, J. B., Mahato, S. K., Joshi, K., Shinde, V., Rakshit, S., Biswas, N., Mukherjee, I. C., Mandal, L., Ganguly, D., Chowdhury, A. A., Chaudhuri, J., Paul, K., Pal, B. C., Vinayagam, J., Pal, C., Manna, A., Jaisankar, P., Chaudhuri, U., Konar, A., Roy, S., & Bandyopadhyay, S. (2012). Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance. Cancer Science, 103(1), 88–99. https://doi.org/10.1111/j.1349-7006.2011.02107.x
  • Chambers, A., Naumov, G., Varghese, H., Nadkarni, K. V., MacDonald, I. C., & Groom, A. C. (2001). Critical steps in hematogenous metastasis. Surgical Oncology Clinics of North America, 10(2), 243–255. https://doi.org/10.1016/S1055-3207(18)30063-2
  • Chang, M. C., Uang, B. J., Wu, H. L., Lee, J. J., Hahn, L. J., & Jeng, J. H. (2002). Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: roles of glutathione and reactive oxygen species. British Journal of Pharmacology, 135(3), 619–630. https://doi.org/10.1038/sj.bjp.0704492
  • Chowdhury, A. A., Chaudhuri, J., Biswas, N., Manna, A., Chatterjee, S., Mahato, S. K., Chaudhuri, U., Jaisankar, P., & Bandyopadhyay, S. (2013). Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway. PloS One, 8(9), e73672. https://doi.org/10.1371/journal.pone.0073672
  • Colak, S., & Dijke, T. P. (2017). Targeting TGF-β signaling in cancer. Trends in Cancer, 3(1), 56–71. https://doi.org/10.1016/j.trecan.2016.11.008
  • Coleman, R. (2001). Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treatment Reviews, 27(3), 165–176. https://doi.org/10.1053/ctrv.2000.0210
  • Conti, A., Espina, V., Chiechi, A., Magagnoli, G., Novello, C., Pazzaglia, L., Quattrini, I., Picci, P., Liotta, L. A., & Benassi, M. S. (2014). Mapping protein signal pathway interaction in sarcoma bone metastasis: linkage between rank, metalloproteinases turnover and growth factor signaling pathways. Clinical & Experimental Metastasis, 31(1), 15–24. https://doi.org/10.1007/s10585-013-9605-6
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Das, S., Parida, R., Sandeep, I., Nayak, S., & Mohanty, S. (2016). Biotechnological intervention in betelvine (Piper betle L.): A review on recent advances and future prospects. Asian Pacific Journal of Tropical Medicine, 9(10), 938–946. https://doi.org/10.1016/j.apjtm.2016.07.029
  • Felipe, L. O., Bicas, J. L., Bouhoute, M. B., Vodo, S., Taarji, N., Nakajima, M., & Neves, M. A. (2022). Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier. Food Research International (Ottawa, Ont.), 153(5), 110894. https://doi.org/10.1016/j.foodres.2021.110894
  • Fingas, C. D., Mertens, J. C., Razumilava, N., Bronk, S. F., Sirica, A. E., & Gores, G. J. (2012). Targeting PDGFR-β in cholangiocarcinoma. Liver International, 32(3), 400–409.
  • Ganguly, S., Mula, S., Chattopadhyay, S., & Chatterjee, M. (2007). An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide. The Journal of Pharmacy and Pharmacology, 59(5), 711–718. https://doi.org/10.1211/jpp.59.5.0012
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J., & Kumar, A. P. (2005). Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. The Journal of Biological Chemistry, 280(7), 5812–5819. https://doi.org/10.1074/jbc.M411429200
  • Guo, W., Zhang, Z., Li, G., Lai, X., Gu, R., Xu, W., Chen, H., Xing, Z., Chen, L., Qian, J., Xu, S., Zeng, F., & Deng, F. (2020). Pyruvate kinase M2 promotes prostate cancer metastasis through regulating ERK1/2-COX-2 signaling. Frontiers in Oncology, 10, 544288. https://doi.org/10.3389/fonc.2020.544288
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of druglike small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hassan, S. B., Gali-Muhtasib, H., Göransson, H., & Larsson, R. (2010). Alpha Terpineol: A potential anticancer agent which acts through suppressing NF-κB signalling. Anticancer Research, 30(6), 1911–1919.
  • Hiraga, T., Ito, S., & Nakamura, H. (2013). Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Research, 73(13), 4112–4122. https://doi.org/10.1158/0008-5472.CAN-12-3801
  • Humphreys, D. D., Friesner, R. A., & Berne, B. J. (1994). A multiple-time-step molecular dynamics algorithm for macromolecules. The Journal of Physical Chemistry, 98(27), 6885–6892. https://doi.org/10.1021/j100078a035
  • Jung, Y., Song, J., Shiozawa, Y., Wang, J., Wang, Z., Williams, B., Havens, A., Schneider, A., Ge, C., Franceschi, R. T., McCauley, L. K., Krebsbach, P. H., & Taichman, R. S. (2008). Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells (Dayton, Ohio), 26(8), 2042–2051. https://doi.org/10.1634/stemcells.2008-0149
  • Kim, J. K., Jung, Y., Wang, J., Joseph, J., Mishra, A., Hill, E. E., Krebsbach, P. H., Pienta, K. J., Shiozawa, Y., & Taichman, R. S. (2013). TBK1 regulates prostate cancer dormancy through mTOR inhibition. Neoplasia (New York, N.Y.), 15(9), 1064–1074. https://doi.org/10.1593/neo.13402
  • Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715. https://doi.org/10.1038/nrd1470
  • Krzeszinski, J., & Wan, Y. (2015). New therapeutic targets for cancer bone metastasis. Trends in Pharmacological Sciences, 36(6), 360–373. https://doi.org/10.1016/j.tips.2015.04.006
  • Kumar, N., Misra, P., Dube, A., Bhattacharya, S., Dikshit, M., & Ranade, S. (2010). Piper betle Linn. a maligned Pan-Asiatic plant with an array of pharmacological activities and prospects for drug discovery. Current Science, 99(7), 922–932.
  • Lamora, A., Talbot, J., Mullard, M., Brounais-Le Royer, B., Redini, F., & Verrecchia, F. (2016). TGF-β signaling in bone remodeling and osteosarcoma progression. Journal of Clinical Medicine, 5(11), 96. https://doi.org/10.3390/jcm5110096
  • Lei, D., Chan, C. P., Wang, Y. P., Wang, T., Lin, B., Huang, C., Lee, J., Chen, H., Jeng, J., & Chang, M. (2003). Antioxidative and antiplatelet effects of aqueous inflorescence Piper betle extract. Journal of Agricultural and Food Chemistry, 51(7), 2083–2088. https://doi.org/10.1021/jf0210223
  • Lian, L., Li, X., Xu, M., Li, X., Wu, M., Zhang, Y., Tao, M., Li, W., Shen, X. M., Zhou, C., & Jiang, M. (2019). VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer, 19(1), 183–198. https://doi.org/10.1186/s12885-019-5322-0
  • Liu, B., Cui, J., Sun, J., Li, J., Han, X., Guo, J., Yi, M., Amizuka, N., Xu, X., & Li, M. (2016). Immunolocalization of MMP9 and MMP2 in osteolytic metastasis originating from MDA-MB-231 human breast cancer cells. Molecular Medicine Reports, 14(2), 1099–1106. https://doi.org/10.3892/mmr.2016.5374
  • Manigauha, A., Ali, H., & Maheshwari, M. U. (2009). Antioxidant activity of ethanolic extract of Piper betle leaves. Journal of Pharmacy Research, 2, 491–494.
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nos\’ e -Hoover chains: The canonical ensemble via continuous dynamics. Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Mashhadi, M. A. (2008). Renal side effects of Ifosfamide in patients admitted for chemotherapy. Journal of Research in Medical Sciences, 13, 240–243.
  • Nagabhushan, M., Amonkar, A. J., Nair, U. J., D'Souza, A. V., & Bhide, S. V. (1989). Hydroxychavicol: A new anti-nitrosating phenolic compound from betel leaf. Mutagenesis, 4(3), 200–204. https://doi.org/10.1093/mutage/4.3.200
  • Negreiros, H. A., de Moura, K. G., Barreto do Nascimento, M. L. L., do Nascimento Rodrigues, D. C., Ferreir, P. M. P., Braz, D. C., de Farias, M. G., de Sousa Corrêia, L., Pereira, A. R. S., Santos, L. K. B., Gonçalves, J. C. R., Mendes, A. N., Carneiro da Silva, F. C., Cavalcant, A. A. C. M., & de Castro E Sousa, J. M. (2021). Alpha-terpineol as antitumor candidate in pre-clinical studies. Anti-Cancer Agents in Medicinal Chemistry, 21(15), 2023–2031. https://doi.org/10.2174/1871520621999210104195820
  • Ng, P. L., Rajab, N. F., Then, S. M., Mohd Yusof, Y. A., Wan Ngah, W. Z., Pin, K. Y., & Looi, M. L. (2014). Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells. Journal of Zhejiang University. Science. B, 15(8), 692–700. https://doi.org/10.1631/jzus.B1300303
  • Nishiwaki, K., Ohigashi, K., Deguchi, T., Murata, K., Nakamura, S., Matsuda, H., & Nakanishi, I. (2018). Structure-activity relationships and docking studies of hydroxychavicol and its analogs as xanthine oxidase inhibitors. Chemical & Pharmaceutical Bulletin, 66(7), 741–747. https://doi.org/10.1248/cpb.c18-00197
  • Novello, C., Pazzaglia, L., Conti, A., Quattrini, I., Pollino, S., Perego, P., Picci, P., & Benassi, M. S. (2014). p53-dependent activation of microRNA-34a in response to etoposide-induced DNA damage in osteosarcoma cell lines not impaired by dominant negative p53 expression. PloS One, 9(12), e114757. https://doi.org/10.1371/journal.pone.0114757
  • Parashar, A., Shukla, A., Sharma, A., Behl, T., Goswami, D., & Mehta, V. (2021). Reckoning γ-Glutamyl-S-allylcysteine as a potential main protease (mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Drug Development and Industrial Pharmacy, 47(5), 699–710. https://doi.org/10.1080/03639045.2021.1934857
  • Perret, A., Dômont, J., Chamseddine, A. N., Dumont, S. N., Verret, B., Briand, S., Court, C., Lazure, T., Adam, J., Ngo, C., Even, C., Levy, A., Bayle, A., Lucibello, F., Haddag-Miliani, L., Faron, M., Honoré, C., Le Cesne, A., & Mir, O. (2021). Efficacy and safety of oral metronomic etoposide in adult patients with metastatic osteosarcoma. Cancer Medicine, 10(1), 230–236. https://doi.org/10.1002/cam4.3610
  • Phumat, P., Khongkhunthian, S., Wanachantararak, P., & Okonogi, S. (2020). Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans. Archives of Oral Biology, 113, 104690. https://doi.org/10.1016/j.archoralbio.2020.104690
  • Qiu, J., Ishizuka, S., Tonokura, K., Sato, K., Inomata, S., & Enami, S. (2019). Effects of pH on interfacial ozonolysis of α-terpineol. The Journal of Physical Chemistry. A, 123(32), 7148–7155. https://doi.org/10.1021/acs.jpca.9b05434
  • Raghavendra, N. M., Pingili, D., Kadasi, S., Mettu, A., & Prasad, S. (2018). Dual or multi-targeting inhibitors: The next generation anticancer agents. European Journal of Medicinal Chemistry, 143, 1277–1300. https://doi.org/10.1016/j.ejmech.2017.10.021
  • Rahman, A. A., Jamal, A. R., Harun, R., Mohd Mokhtar, N., & Wan Ngah, W. Z. (2014). Gamma-tocotrienol and hydroxychavicol synergistically inhibits growth and induces apoptosis of human glioma cells. BMC Complementary and Alternative Medicine, 14, 213.
  • Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N., & Vlodavsky, I. (2017). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284(1), 42–55. https://doi.org/10.1111/febs.13932
  • Selvaggi, G., & Scagliotti, G. (2005). Management of bone metastases in cancer: a review. Critical Reviews in Oncology/Hematology, 56(3), 365–378. https://doi.org/10.1016/j.critrevonc.2005.03.011
  • Sharma, A., Tiwari, V., & Sowdhamini, R. (2020). Computational search for potential COVID-19 drugs from FDAapproved drugs and small molecules of natural origin identifies several anti-virals and plant products. Journal of Biosciences, 45(1), 100–118. https://doi.org/10.1007/s12038-020-00069-8
  • Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nature Reviews. Drug Discovery, 8(7), 579–591. https://doi.org/10.1038/nrd2803
  • Vyawahare, N. S., Kagathara, V. G., Katedeshmukh, R. G., Sharma, P. K., & Mohod, S. M. (2010). Evaluation of antiulcer activity of Piper betle leaves extract in Rats. Research Journal of Pharmacology and Pharmacodynamics, 2(4), 278–282.
  • Wang, L., Li, X., Zhang, S., Lu, W., Liao, S., Liu, X., Shan, L., Shen, X., Jiang, H., Zhang, W., Huang, J., & Li, H. (2012). Natural products as a gold mine for selective matrix metalloproteinases inhibitors. Bioorganic & Medicinal Chemistry, 20(13), 4164–4171. https://doi.org/10.1016/j.bmc.2012.04.063
  • Wishart, D. S. (2021). Drug bank, version 5.0. Retrieved October 8, from https://go.drugbank.com/
  • Yadav, L., Puri, N., Rastogi, V., Satpute, P., Ahmad, R., & Kaur, G. (2014). Matrix metalloproteinases and cancer—Roles in threat and therapy. Asian Pacific Journal of Cancer Prevention : APJCP, 15(3), 1085–1091. https://doi.org/10.7314/apjcp.2014.15.3.1085
  • Yasuda, K., Torigoe, T., Mariya, T., Asano, T., Kuroda, T., Matsuzaki, J., Ikeda, K., Yamauchi, M., Emori, M., Asanuma, H., Hasegawa, T., Saito, T., Hirohashi, Y., & Sato, N. (2014). Fibroblasts induce expression of FGF4 in ovarian cancer stem-like cells/cancer-initiating cells and upregulate their tumor initiation capacity. Laboratory Investigation; A Journal of Technical Methods and Pathology, 94(12), 1355–1369. https://doi.org/10.1038/labinvest.2014.122

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.