304
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the inhibitory and penetrating properties of three novel anticancer and antimicrobial scorpion peptides via molecular docking and molecular dynamic simulation

, , &
Pages 15354-15385 | Received 01 Dec 2022, Accepted 28 Feb 2023, Published online: 16 Mar 2023

References

  • Acharya, D., Sullivan Matthew, J., Duell Benjamin, L., Goh Kelvin, G. K., Katupitiya, L., Gosling, D., et al. (2019). Rapid bladder interleukin-10 synthesis in response to uropathogenic Escherichia coli is part of a defense strategy triggered by the major bacterial flagellar filament FliC and contingent on TLR5. mSphere, 4(6), e00545–19.
  • Adams, S. (2009). Toll-like receptor agonists in cancer therapy. Immunotherapy, 1(6), 949–964.
  • Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., & Raghava, G. P. S. (2021). AntiCP 2.0: An updated model for predicting anticancer peptides. Briefings in Bioinformatics, 22(3), bbaa153.
  • Ahluwalia, S., & Shah, N. (2014). Animal venom for treating breast cancer. International Journal of Pharmacy and Pharmaceutical Sciences, 6(9), 24–30.
  • Ahmad Salarian, A., Jalali, A., Zare Mirakabadi, A., Vatanpour, H., & F, H. S. (2012). Cytotoxic effects of two Iranian scorpions Odontobuthusdoriae and Bothutus saulcyi on five human cultured cell lines and fractions of toxic venom. Iranian Journal of Pharmaceutical Research: IJPR, 11(1), 357–367.
  • Amin, M. B. (2009). Histological variants of urothelial carcinoma: diagnostic, therapeutic and prognostic implications. Modern Pathology, 22 Suppl 2, S96–s118.
  • Arpornsuwan, T., Buasakul, B., Jaresitthikunchai, J., & Roytrakul, S. (2014). Potent and rapid antigonococcal activity of the venom peptide BmKn2 and its derivatives against different Maldi biotype of multidrug-resistant Neisseria gonorrhoeae. Peptides, 53, 315–320.
  • Bacheller, C. D., & Bernstein, J. M. (1997). Urinary tract infections. The Medical Clinics of North America, 81(3), 719–730.
  • Bayat, A. A., Sadeghi, N., Fatemi, R., Nowroozi, M. R., Ohadian Moghadam, S., Borzuee, M., et al. (2020). Monoclonal antibody against ROR1 induces apoptosis in human bladder carcinoma cells. Avicenna Journal of Medical Biotechnology, 12(3), 165–171.
  • Bellizzi, A. M. (2020). An algorithmic immunohistochemical approach to define tumor type and assign site of origin. Advances in Anatomic Pathology, 27(3), 114–163.
  • Berezney, R., & Buchholtz, L. A. (1981). Dynamic association of replicating DNA fragments with the nuclear matrix of regenerating liver. Experimental Cell Research, 132(1), 1–13.
  • Bevers, R. F., Kurth, K. H., & Schamhart, D. H. (2004). Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. British Journal of Cancer, 91(4), 607–612.
  • Biswas, S., Mahmud, S., Mita, M. A., Afrose, S., Hasan, M. R., Sultana Shimu, M. S., et al. (2022). Molecular docking and dynamics studies to explore effective inhibitory peptides against the spike receptor binding domain of SARS-CoV-2. Frontiers in Molecular Biosciences,8, 791642.
  • Boël, P., Wildmann, C., Sensi, M. L., Brasseur, R., Renauld, J. C., Coulie, P., et al. (1995). BAGE: A new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity, 2(2), 167–175.
  • Borcherding, N., Kusner, D., Liu, G. H., & Zhang, W. (2014). ROR1, an embryonic protein with an emerging role in cancer biology. Protein & Cell, 5(7), 496–502.
  • Cao, L., Dai, C., Li, Z., Fan, Z., Song, Y., Wu, Y., et al. (2012). Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS One, 7(7), e40135.
  • Chen, Q., & Fu, L. (2020). Upregulation of long non-coding RNA ROR1-AS1 promotes cell growth and migration in bladder cancer by regulation of miR-504. PLoS One, 15(1), e0227568.
  • Chen, S. L., Hung, C. S., Pinkner, J. S., Walker, J. N., Cusumano, C. K., Li, Z., et al. (2009). Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proceedings of the National Academy of Sciences of United States of America, 106(52), 22439–22444.
  • Crusca, E., Jr., Basso, L. G. M., Altei, W. F., & Marchetto, R. (2018). Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion’s venom. Biochimica et Biophysica Acta. Biomembranes, 1860(11), 2155–2165.
  • Daneshmanesh, A. H., Hojjat-Farsangi, M., Khan, A. S., Jeddi-Tehrani, M., Akhondi, M. M., Bayat, A. A., et al. (2012). Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia, 26(6), 1348–1355.
  • Daneshmanesh, A. H., Hojjat-Farsangi, M., Moshfegh, A., Khan, A. S., Mikaelsson, E., Österborg, A., et al. (2015). The PI3K/AKT/mTOR pathway is involved in direct apoptosis of CLL cells induced by ROR1 monoclonal antibodies. British Journal of Haematology, 169(3), 455–458.
  • De Backer, O., Arden, K. C., Boretti, M., Vantomme, V., De Smet, C., Czekay, S., Viars, C. S., De Plaen, E., Brasseur, F., Chomez, P., Van den Eynde, B., Boon, T., & van der Bruggen, P. (1999). Characterization of the GAGE genes that are expressed in various human cancers and in normal testis. Cancer Research, 59(13), 3157–3165.
  • De Plaen, E., Arden, K., Traversari, C., Gaforio, J. J., Szikora, J. P., De Smet, C., et al. (1994). Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics, 40(5), 360–369.
  • DeGeorge, K. C., Holt, H. R., & Hodges, S. C. (2017). Bladder cancer: Diagnosis and treatment. American Family Physician, 96(8), 507–514.
  • Deutsch, E. W., Bandeira, N., Sharma, V., Perez-Riverol, Y., Carver, J. J., Kundu, D. J., et al. (2020). The ProteomeXchange consortium in 2020: Enabling 'big data’ approaches in proteomics. Nucleic Acids Research, 48(D1), D1145–d52.
  • Ding, J., Chua, P.-J., Bay, B.-H., & Gopalakrishnakone, P. (2014). Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental Biology and Medicine (Maywood, NJ), 239(4), 387-93.
  • Duan, Q., Zhou, M., Zhu, L., & Zhu, G. (2013). Flagella and bacterial pathogenicity. Journal of Basic Microbiology, 53(1), 1–8.
  • Dyrskjøt, L., Zieger, K., Kissow Lildal, T., Reinert, T., Gruselle, O., Coche, T., et al. (2012). Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma. British Journal of Cancer, 107(1), 116–122.
  • Elrayess, R. A., Mohallal, M. E., El-Shahat, Y. M., Ebaid, H. M., Miller, K., Strong, P. N., et al. (2020). Cytotoxic effects of Smp24 and Smp43 scorpion venom antimicrobial peptides on tumour and non-tumour cell lines. International Journal of Peptide Research and Therapeutics, 26(3), 1409–1415.
  • Elrayess, R. A., Mohallal, M. E., Mobarak, Y. M., Ebaid, H. M., Haywood-Small, S., Miller, K., et al. (2021). Scorpion venom antimicrobial peptides induce caspase-1 dependant pyroptotic cell death. Frontiers in Pharmacology, 12, 788874.
  • Feng, C., Wang, P., Guan, M., Jiang, H., Wen, H., Ding, Q., et al. (2011). Urinary BLCA-4 is highly specific for detection of bladder cancer in Chinese Han population and is related to tumour invasiveness. Folia Biologica (Praha), 57(6), 242–247.
  • Frodermann, V., Chau, T. A., Sayedyahossein, S., Toth, J. M., Heinrichs, D. E., & Madrenas, J. (2011). A modulatory interleukin-10 response to staphylococcal peptidoglycan prevents th1/th17 adaptive immunity to Staphylococcus aureus. The Journal of Infectious Diseases, 204(2), 253–262.
  • Getzenberg, R. H., Konety, B. R., Oeler, T. A., Quigley, M. M., Hakam, A., Becich, M. J., & Bahnson, R. R. (1996). Bladder cancer-associated nuclear matrix proteins. Cancer Research, 56(7), 1690–1694.
  • Ghosh, A., Roy, R., Nandi, M., & Mukhopadhyay, A. (2019). Scorpion venom–toxins that aid in drug development: A review. International Journal of Peptide Research and Therapeutics, 25(1), 27–37.
  • Gordeeva, O. (2018). Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Seminars in Cancer Biology, 53, 75–89.
  • Gromova, I., Svensson, S., Gromov, P., & Moreira, J. M. A. (2017). Identification of BLCAP as a novel STAT3 interaction partner in bladder cancer. PLoS One, 12(11), e0188827.
  • Guo, R., Liu, J., Chai, J., Gao, Y., Abdel-Rahman, M. A., & Xu, X. (2022). Scorpion peptide Smp24 exhibits a potent antitumor effect on human lung cancer cells by damaging the membrane and cytoskeleton in vivo and in vitro. Toxins, 14(7), 438.
  • Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 4(2), 155–161.
  • Henry, C. E., Llamosas, E., Djordjevic, A., Hacker, N. F., & Ford, C. E. (2016). Migration and invasion is inhibited by silencing ROR1 and ROR2 in chemoresistant ovarian cancer. Oncogenesis, 5(5), e226.
  • Hirakawa, H., Suzue, K., Kurabayashi, K., & Tomita, H. (2019). The Tol-Pal system of Uropathogenic Escherichia coli is responsible for optimal internalization into and aggregation within bladder epithelial cells, colonization of the urinary tract of mice, and bacterial motility. Frontiers in Microbiology, 10, 1827.
  • Honorato, R. V., Koukos, P. I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., et al. (2021). Structural biology in the clouds: The WeNMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 8, 729513.
  • Hung, C.-S., Bouckaert, J., Hung, D., Pinkner, J., Widberg, C., DeFusco, A., et al. (2002). Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Molecular Microbiology, 44(4), 903–915.
  • Hung, C., Zhou, Y., Pinkner Jerome, S., Dodson Karen, W., Crowley Jan, R., Heuser, J., et al. (2013). Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio, 4(5), e00645–13.
  • Jahangirian, E., Jamal, G. A., Nouroozi, M., & Mohammadpour, A. (2021). A reverse vaccinology and immunoinformatics approach for designing a multiepitope vaccine against SARS-CoV-2. Immunogenetics, 73(6), 459–477.
  • Jahangirian, E., Jamal, G. A., Nouroozi, M., & Mohammadpour, A. (2022). A novel multiepitope vaccine against bladder cancer based on CTL and HTL epitopes for induction of strong immune using immunoinformatics approaches. International Journal of Peptide Research and Therapeutics, 28(2), 71.
  • Jalali, A., Vatanpour, H., Hosseininasab, Z., Rowan, E. G., & Harvey, A. L. (2007). The effect of the venom of the yellow Iranian scorpion Odontobuthus doriae on skeletal muscle preparations in vitro. Toxicon, 50(8), 1019–1026.
  • Jiang, D. M., Chung, P., Kulkarni, G. S., & Sridhar, S. S. (2020). Trimodality therapy for muscle-invasive bladder cancer: Recent advances and unanswered questions. Current Oncology Reports, 22(2), 14.
  • Karvonen, H., Barker, H., Kaleva, L., Niininen, W., & Ungureanu, D. (2019). Molecular mechanisms associated with ROR1-mediated drug resistance: Crosstalk with hippo-YAP/TAZ and BMI-1 pathways. Cells, 8(8), 812.
  • Karvonen, H., Niininen, W., Murumägi, A., & Ungureanu, D. (2017). Targeting ROR1 identifies new treatment strategies in hematological cancers. Biochemical Society Transactions, 45(2), 457–464.
  • Khara, A., Jahangirian, E., & Tarrahimofrad, H. (2020). The homology modeling and docking investigation of human Cathepsin B. International Journal of Medical Toxicology and Forensic Medicine, 10(1), 26687.
  • King, G. F. (2011). Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11(11), 1469–1484.
  • Koch, G. E., Smelser, W. W., & Chang, S. S. (2021). Side effects of intravesical BCG and chemotherapy for bladder cancer: What they are and how to manage them. Urology, 149, 11–20.
  • Kulkarni, P., Shiraishi, T., Rajagopalan, K., Kim, R., Mooney, S. M., & Getzenberg, R. H. (2012). Cancer/testis antigens and urological malignancies. Nature Reviews Urology, 9(7), 386–396.
  • Lane, M. C., Alteri, C. J., Smith, S. N., & Mobley, H. L. T. (2007). Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proceedings of the National Academy of Sciences of United States of America, 104(42), 16669–16674.
  • Laniado, M. E., Fraser, S. P., & Djamgoz, M. B. (2001). Voltage-gated K(+) channel activity in human prostate cancer cell lines of markedly different metastatic potential: distinguishing characteristics of PC-3 and LNCaP cells. The Prostate, 46(4), 262–274.
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786.
  • Lerut, E., Van Poppel, H., Joniau, S., Gruselle, O., Coche, T., & Therasse, P. (2015). Rates of MAGE-A3 and PRAME expressing tumors in FFPE tissue specimens from bladder cancer patients: Potential targets for antigen-specific cancer immunotherapeutics. International Journal of Clinical and Experimental Pathology, 8(8), 9522–9532.
  • Lethé, B., Lucas, S., Michaux, L., De Smet, C., Godelaine, D., Serrano, A., et al. (1998). LAGE-1, a new gene with tumor specificity. International Journal of Cancer, 76(6), 903–908.
  • Lewis, R. J., & Garcia, M. L. (2003). Therapeutic potential of venom peptides. Nature Reviews Drug Discovery, 2(10), 790–802.
  • Lezcano, C., Jungbluth, A. A., Nehal, K. S., Hollmann, T. J., & Busam, K. J. (2018). PRAME expression in melanocytic tumors. The American Journal of Surgical Pathology, 42(11), 1456–1465.
  • Lohman, M. E., Steen, A. J., Grekin, R. C., & North, J. P. (2021). The utility of PRAME staining in identifying malignant transformation of melanocytic nevi. Journal of Cutaneous Pathology, 48(7), 856–862.
  • Ma, R., Mahadevappa, R., & Kwok, H. F. (2017). Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget, 8(59), 100908–100930.
  • Machado, R. J., Estrela, A. B., Nascimento, A. K., Melo, M. M., Torres-Rêgo, M., Lima, E. O., et al. (2016). Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: Structure, cytotoxicity and antimicrobial activity. Toxicon, 119, 362–370.
  • Masiakowski, P., & Carroll, R. D. (1992). A novel family of cell surface receptors with tyrosine kinase-like domain. The Journal of Biological Chemistry, 267(36), 26181–26190.
  • Mavromatis, C., Bokil, N. J., Totsika, M., Kakkanat, A., Schaale, K., & Cannistraci, C. V. (2015). The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host–pathogen interactions. Cellular Microbiology, 17(5), 730–746.
  • McNally, A., La Ragione, R. M., Best, A., Manning, G., & Newell, D. G. (2007). An aflagellate mutant Yersinia enterocolitica biotype 1A strain displays altered invasion of epithelial cells, persistence in macrophages, and cytokine secretion profiles in vitro. Microbiology, 153(5), 1339–1349.
  • Melekos, M. D., & Moutzouris, G. D. (2000). Intravesical therapy of superficial bladder cancer. Current Pharmaceutical Design, 6(3), 345–359.
  • Ménez, A., Stöcklin, R., & Mebs, D. (2006). Venomics’ or: The venomous systems genome project. Toxicon : official Journal of the International Society on Toxinology, 47(3), 255–259. https://doi.org/10.1016/j.toxicon.2005.12.010
  • Mokaberi, P., Babayan-Mashhadi, F., & Amiri Tehrani Zadeh, Z. (2021). Analysis of the interaction behavior between Nano-Curcumin and two human serum proteins: combining spectroscopy and molecular stimulation to understand protein-protein interaction. Journal of Biomolecular Structure and Dynamics, 39(9), 3358–3377.
  • Moreira, J. M., Ohlsson, G., Gromov, P., Simon, R., Sauter, G., Celis, J. E., et al. (2010). Bladder cancer-associated protein, a potential prognostic biomarker in human bladder cancer. Molecular & Cellular Proteomics: MCP, 9(1), 161–177.
  • Ortiz, E., Gurrola, G. B., Schwartz, E. F., & Possani, L. D. (2015). Scorpion venom components as potential candidates for drug development. Toxicon, 93, 125–135.
  • Panja, K., & Buranapraditkun, S. (2021). Scorpion venom peptide effects on inhibiting proliferation and inducing apoptosis in canine mammary gland tumor cell lines, 11(7), 2119.
  • Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., et al. (2022). The PRIDE Database Resources in 2022: a Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Research, 50(D1), D543–d52.
  • Perez-Riverol, Y., Xu, Q. W., Wang, R., Uszkoreit, J., Griss, J., Sanchez, A., et al. (2016). PRIDE Inspector Toolsuite: Moving toward a universal visualization tool for proteomics data standard formats and quality assessment of ProteomeXchange datasets. Molecular & Cellular Proteomics: MCP, 15(1), 305–317.
  • Petricevich, V. L. (2010). Scorpion venom and the inflammatory response. Mediators of Inflammation, 2010, 903295.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., et al. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B.-H., Vreven, T., & Weng, Z. (2014). ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics, 30(12), 1771–1773.
  • Price, J. D., Schaumburg, J., Sandin, C., Atkinson, J. P., Lindahl, G., & Kemper, C. (2005). Induction of a regulatory phenotype in human CD4+ T cells by streptococcal M protein. The Journal of Immunology, 175(2), 677.
  • Rahimnahal, S., Shams, M., Tarrahimofrad, H., & Mohammadi, Y. (2020). Analysis to describe the catalytic critical residue of keratinase mojavensis using peptidase inhibitors: A docking-based bioinformatics study. Ilam-University-of-Medical-Sciences, 7(2), 13–28.
  • Reddy, U. R., Phatak, S., Allen, C., Nycum, L. M., Sulman, E. P., White, P. S., et al. (1997). Localization of the human Ror1 gene (NTRKR1) to chromosome 1p31-p32 by fluorescence in situ hybridization and somatic cell hybrid analysis. Genomics, 41(2), 283–285.
  • Ruault, M., van der Bruggen, P., Brun, M. E., Boyle, S., Roizès, G., & Sario, D. (2002). A. New BAGE (B melanoma antigen) genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 have a cancer/testis expression profile. European Journal of Human Genetics: EJHG, 10(12), 833–840.
  • Santoni, M., Catanzariti, F., Minardi, D., Burattini, L., Nabissi, M., Muzzonigro, G., et al. (2012). Pathogenic and diagnostic potential of BLCA-1 and BLCA-4 nuclear proteins in urothelial cell carcinoma of human bladder. Advances in Urology, 2012, 397412.
  • Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419.
  • Seddighzadeh, M., Larsson, P., Ulfgren, A. C., Onelöv, E., Berggren, P., Tribukait, B., et al. (2003). Low IL-1alpha expression in bladder cancer tissue and survival. European Urology, 43(4), 362–368.
  • Shelley, M. D., Court, J. B., Kynaston, H., Wilt, T. J., Fish, R. G., & Mason, M. (2000). Intravesical Bacillus Calmette-Guerin in Ta and T1 bladder cancer. The Cochrane Database of Systematic Reviews, 2000(4), Cd001986.
  • Shore, N. D., Palou Redorta, J., Robert, G., Hutson, T. E., Cesari, R., Hariharan, S., et al. (2021). Non-muscle-invasive bladder cancer: An overview of potential new treatment options. Urologic Oncology, 39(10), 642–663.
  • Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T., & Old, L. J. (2005). Cancer/testis antigens, gametogenesis and cancer. Nature Reviews Cancer, 5(8), 615–625.
  • Slovacek, H., Zhuo, J., & Taylor, J. M. (2021). Approaches to non-muscle-invasive bladder cancer. Current Oncology Reports, 23(9), 105.
  • Smith, J. J., Jones, A., & Alewood, P. F. (2012). Mass landscapes of seven scorpion species: The first analyses of Australian species with 1,5-DAN matrix. Journal of Venom Research, 3, 7–14.
  • Spaulding, C. N., Klein, R. D., Ruer, S., Kau, A. L., Schreiber, H. L., Cusumano, Z. T., et al. (2017). Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature, 546(7659), 528–532.
  • Thomsen, R., & Christensen, M. H. (2006). MolDock:  A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321.
  • Tong-ngam, P., Roytrakul, S., & Sritanaudomchai, H. (2015). BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis. Asian Pacific Journal of Cancer Prevention, 16(7), 2807–2811.
  • Ulett, G. C., Totsika, M., Schaale, K., Carey, A. J., Sweet, M. J., & Schembri, M. A. (2013). Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Current Opinion in Microbiology, 16(1), 100–107.
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725.
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection, 8(2), 127–134.
  • Wang, W. X., & Ji, Y. H. (2005). Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro. Journal of Neuro-Oncology, 73(1), 1–7.
  • Wurpel, D. J., Beatson, S. A., Totsika, M., Petty, N. K., & Schembri, M. A. (2013). Chaperone-usher fimbriae of Escherichia coli. PLoS One. 8(1), e52835.
  • Wyant, T. L., Tanner, M. K., & Sztein, M. B. (1999). Salmonella typhi Flagella are potent inducers of proinflammatory cytokine secretion by human monocytes. Infection and Immunity, 67(7), 3619–3624.
  • Xu, Y., Zou, R., Wang, J., & Wang, Z. W. (2020). The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer. Cell Proliferation, 53(3), e12770.
  • Yamamoto, S., Tsukamoto, T., Terai, A., Kurazono, H., Takeda, Y., & Yoshida, O. (1997). Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. The Journal of Urology, 157(3), 1127–1129.
  • Yan, J., Bhadra, P., Li, A., Sethiya, P., Qin, L., Tai, H. K., et al. (2020). Deep-AmPEP30: Improve short antimicrobial peptides prediction with deep learning. Molecular Therapy - Nucleic Acids, 20, 882–894.
  • Yin, M., Joshi, M., Meijer, R. P., Glantz, M., Holder, S., Harvey, H. A., et al. (2016). Neoadjuvant chemotherapy for muscle-invasive bladder cancer: A systematic review and two-step meta-analysis. The Oncologist, 21(6), 708–715.
  • Zeng, X. C., Wang, S. X., Zhu, Y., Zhu, S. Y., & Li, W. X. (2004). Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides, 25(2), 143–150.
  • Zeng, X.-C., Zhou, L., Shi, W., Luo, X., Zhang, L., Nie, Y., et al. (2013). Three new antimicrobial peptides from the scorpion Pandinus imperator. Peptides, 45, 28–34.
  • Zerouti, K., Khemili, D., Laraba-Djebari, F., & Hammoudi-Triki, D. (2021). Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection. Toxin Reviews, 40(3), 310–324.
  • Zhang, H., Qiu, J., Ye, C., Yang, D., Gao, L., Su, Y., et al. (2014). ROR1 expression correlated with poor clinical outcome in human ovarian cancer. Scientific Reports, 4(1), 5811.
  • Zhang, S., Chen, L., Wang-Rodriguez, J., Zhang, L., Cui, B., Frankel, W., et al. (2012). The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. The American Journal of Pathology, 181(6), 1903–1910.
  • Zhou, J. K., Zheng, Y. Z., Liu, X. S., Gou, Q., Ma, R., Guo, C. L., et al. (2017). ROR1 expression as a biomarker for predicting prognosis in patients with colorectal cancer. Oncotarget, 8(20), 32864–32872.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.