222
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based small inhibitors search combined with molecular dynamics driven energies for human programmed cell death-1 (PD-1) protein

, , , , &
Pages 14771-14785 | Received 10 Nov 2022, Accepted 01 Mar 2023, Published online: 16 Mar 2023

References

  • Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E., & Rosenberg, S. A. (2009). Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 114(8), 1537–1544. https://doi.org/10.1182/blood-2008-12-195792
  • Almahmoud, S., & Zhong, H. A. (2019). Molecular modeling studies on the binding mode of the PD-1/PD-L1 complex inhibitors. International Journal of Molecular Sciences, 20(18), 4654. https://doi.org/10.3390/ijms20184654
  • Altona, C., & t., Sundaralingam, M. (1972). Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. Journal of the American Chemical Society, 94(23), 8205–8212. https://doi.org/10.1021/ja00778a043
  • Andrews, P. (1986). Functional groups, drug-receptor interactions and drug design. Trends in Pharmacological Sciences, 7, 148–151. https://doi.org/10.1016/0165-6147(86)90292-0
  • Brunton, L. L., Chabner, B., & Knollmann, B. C. (2018). Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill Education.
  • Case, D. A., Belfon, K., Ben-Shalom, I., Brozell, S. R., Cerutti, D., Cheatham, T., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Kasavajhala, K., Kovalenko, A., Krasny, R., Kurtzman, T. … Giambasu, G. (2020). Amber 2020.
  • Community, B. O. (2018). Blender - a 3D modelling and rendering package. Retrieved from http://www.blender.org
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Ferrara, R., Mezquita, L., Texier, M., Lahmar, J., Audigier-Valette, C., Tessonnier, L., Mazieres, J., Zalcman, G., Brosseau, S., Le Moulec, S., Leroy, L., Duchemann, B., Lefebvre, C., Veillon, R., Westeel, V., Koscielny, S., Champiat, S., Ferté, C., Planchard, D., … Caramella, C. (2018). Hyperprogressive disease in patients with advanced non–small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncology, 4(11), 1543–1552. https://doi.org/10.1001/jamaoncol.2018.3676
  • Fife, B. T., & Bluestone, J. A. (2008). Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways. Immunological Reviews, 224(1), 166–182. https://doi.org/10.1111/j.1600-065X.2008.00662.x
  • Gambichler, T., Reuther, J., Scheel, C. H., & Becker, J. C. (2020). On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19. Journal for ImmunoTherapy of Cancer, 8(2), e001145. https://doi.org/10.1136/jitc-2020-001145
  • Grywalska, E., Pasiarski, M., Góźdź, S., & Roliński, J. (2018). Immune-checkpoint inhibitors for combating T-cell dysfunction in cancer. OncoTargets and Therapy, 11, 6505–6524. https://doi.org/10.2147/OTT.S150817
  • Halim, S. A., Jabeen, S., Khan, A., & Al-Harrasi, A. (2021). Rational design of novel inhibitors of α-glucosidase: An application of quantitative structure activity relationship and structure-based virtual screening. Pharmaceuticals, 14(5), 482. https://doi.org/10.3390/ph14050482
  • Halim, S. A., Sikandari, A. G., Khan, A., Wadood, A., Fatmi, M. Q., Csuk, R., & Al-Harrasi, A. (2021). Structure-based virtual screening of tumor necrosis factor-α inhibitors by cheminformatics approaches and bio-molecular simulation. Biomolecules, 11(2), 329. https://doi.org/10.3390/biom11020329
  • Halim, S. A., Waqas, M., Khan, A., & Al-Harrasi, A. (2021). In silico prediction of novel inhibitors of SARS-CoV-2 main protease through structure-based virtual screening and molecular dynamic simulation. Pharmaceuticals, 14(9), 896. https://doi.org/10.3390/ph14090896
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Keir, M. E., Butte, M. J., Freeman, G. J., & Sharpe, A. H. (2008). PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 26, 677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331
  • Keizer, R. J., Huitema, A. D., Schellens, J. H., & Beijnen, J. H. (2010). Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clinical Pharmacokinetics, 49(8), 493–507.
  • Khair, D. O., Bax, H. J., Mele, S., Crescioli, S., Pellizzari, G., Khiabany, A., Nakamura, M., Harris, R. J., French, E., Hoffmann, R. M., Williams, I. P., Cheung, A., Thair, B., Beales, C. T., Touizer, E., Signell, A. W., Tasnova, N. L., Spicer, J. F., Josephs, D. H., … Karagiannis, S. N. (2019). Combining immune checkpoint inhibitors: Established and emerging targets and strategies to improve outcomes in melanoma. Frontiers in Immunology, 10, 453. https://doi.org/10.3389/fimmu.2019.00453
  • Krause, M. E., & Sahin, E. (2019). Chemical and physical instabilities in manufacturing and storage of therapeutic proteins. Current Opinion in Biotechnology, 60, 159–167. https://doi.org/10.1016/j.copbio.2019.01.014
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Kruger, S., Ilmer, M., Kobold, S., Cadilha, B. L., Endres, S., Ormanns, S., Schuebbe, G., Renz, B. W., D’Haese, J. G., Schloesser, H., Heinemann, V., Subklewe, M., Boeck, S., Werner, J., & von Bergwelt-Baildon, M. (2019). Advances in cancer immunotherapy 2019–latest trends. Journal of Experimental & Clinical Cancer Research, 38(1), 1–11. https://doi.org/10.1186/s13046-019-1266-0
  • Kuol, N., Stojanovska, L., Nurgali, K., & Apostolopoulos, V. (2018). PD-1/PD-L1 in disease. Immunotherapy, 10(2), 149–160. https://doi.org/10.2217/imt-2017-0120
  • Li, K., & Tian, H. (2019). Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. Journal of Drug Targeting, 27(3), 244–256. https://doi.org/10.1080/1061186X.2018.1440400
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lippert, T., & Rarey, M. (2009). Fast automated placement of polar hydrogen atoms in protein-ligand complexes. Journal of Cheminformatics, 1(1), 1–12. https://doi.org/10.1186/1758-2946-1-13
  • Lipson, E. J., & Drake, C. G. (2011). Ipilimumab: An anti-CTLA-4 antibody for metastatic melanoma. Clinical Cancer Research, 17(22), 6958–6962. https://doi.org/10.1158/1078-0432.CCR-11-1595
  • Liu, H., Guo, L., Zhang, J., Zhou, Y., Zhou, J., Yao, J., Wu, H., Yao, S., Chen, B., Chai, Y., & Chai, Y. (2019). Glycosylation-independent binding of monoclonal antibody toripalimab to FG loop of PD-1 for tumor immune checkpoint therapy. MAbs, 11, 681–690.
  • Makuku, R., Khalili, N., Razi, S., Keshavarz-Fathi, M., & Rezaei, N. (2021). Current and future perspectives of PD-1/PDL-1 blockade in cancer immunotherapy. Journal of Immunology Research, 2021, 1–15. https://doi.org/10.1155/2021/6661406
  • Miller III, B. R., McGee, Jr, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Minchinton, A. I., & Tannock, I. F. (2006). Drug penetration in solid tumours. Nature Reviews. Cancer, 6(8), 583–592. https://doi.org/10.1038/nrc1893
  • Muegge, I. (2003). Selection criteria for drug‐like compounds. Medicinal Research Reviews, 23(3), 302–321. https://doi.org/10.1002/med.10041
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Origin(Pro). (2021). Version 2021. OriginLab Corporation, Northampton, MA, USA.
  • Pathania, S., & Singh, P. K. (2021). Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: should there be a critical screening parameter in drug designing protocols? Expert Opinion on Drug Metabolism & Toxicology, 17(4), 351–354. https://doi.org/10.1080/17425255.2021.1865309
  • Poels, K., van Leent, M. M. T., Boutros, C., Tissot, H., Roy, S., Meerwaldt, A. E., Toner, Y. C. A., Reiche, M. E., Kusters, P. J. H., Malinova, T., Huveneers, S., Kaufman, A. E., Mani, V., Fayad, Z. A., de Winther, M. P. J., Marabelle, A., Mulder, W. J. M., Robert, C., Seijkens, T. T. P., & Lutgens, E. (2020). Immune checkpoint inhibitor therapy aggravates T cell–driven plaque inflammation in atherosclerosis. JACC. CardioOncology, 2(4), 599–610. https://doi.org/10.1016/j.jaccao.2020.08.007
  • Powles, T., Eder, J. P., Fine, G. D., Braiteh, F. S., Loriot, Y., Cruz, C., Bellmunt, J., Burris, H. A., Petrylak, D. P., Teng, S-l., Shen, X., Boyd, Z., Hegde, P. S., Chen, D. S., & Vogelzang, N. J. (2014). MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature, 515(7528), 558–562. https://doi.org/10.1038/nature13904
  • Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., & Kramer, P. B. (1987). Numerical recipes: The art of scientific computing. Physics Today, 40(10), 120–122. https://doi.org/10.1063/1.2820230
  • Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Sakuishi, K., Apetoh, L., Sullivan, J. M., Blazar, B. R., Kuchroo, V. K., & Anderson, A. C. (2010). Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. Journal of Experimental Medicine, 207(10), 2187–2194. https://doi.org/10.1084/jem.20100643
  • Schrodinger, L. L. C. (2015). The PyMOL Molecular Graphics System, Version 1.8.
  • Sengupta, A., Li, Z., Song, L. F., Li, P., & Merz, K. M. Jr, (2021). Parameterization of monovalent ions for the Opc3, Opc, Tip3p-Fb, and Tip4p-Fb water models. Journal of Chemical Information and Modeling, 61(2), 869–880. https://doi.org/10.1021/acs.jcim.0c01390
  • Tang, S., & Kim, P. S. (2019). A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. Proceedings of the National Academy of Sciences of the United States of America, 116(49), 24500–24506. https://doi.org/10.1073/pnas.1916916116
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • ULC. (2020a) Molecular Operating Environment (MOE), 2019.01: Chemical Computing Group ULC 1010 Sherbooke St. West, Suite# 910, Montreal.
  • ULC. (2020b). Molecular Operating Environment (MOE), 2020.09.
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, B., & Merz, K. M. (2006). A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules. Journal of Chemical Theory and Computation, 2(1), 209–215. https://doi.org/10.1021/ct050212s
  • Wang, M., Wang, J., Wang, R., Jiao, S., Wang, S., Zhang, J., & Zhang, M. (2019). Identification of a monoclonal antibody that targets PD-1 in a manner requiring PD-1 Asn58 glycosylation. Communications Biology, 2(1), 1–10. https://doi.org/10.1038/s42003-019-0642-9
  • Wang, Y., Zhou, S., Yang, F., Qi, X., Wang, X., Guan, X., Shen, C., Duma, N., Vera Aguilera, J., Chintakuntlawar, A., Price, K. A., Molina, J. R., Pagliaro, L. C., Halfdanarson, T. R., Grothey, A., Markovic, S. N., Nowakowski, G. S., Ansell, S. M., & Wang, M. L. (2019). Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: A systematic review and meta-analysis. JAMA Oncology, 5(7), 1008–1019. https://doi.org/10.1001/jamaoncol.2019.0393
  • Yang, T., Wu, J. C., Yan, C., Wang, Y., Luo, R., Gonzales, M. B., Dalby, K. N., & Ren, P. (2011). Virtual screening using molecular simulations. Proteins, 79(6), 1940–1951. https://doi.org/10.1002/prot.23018
  • Zhang, N., Tu, J., Wang, X., & Chu, Q. (2019). Programmed cell death-1/programmed cell death ligand-1 checkpoint inhibitors: Differences in mechanism of action. Immunotherapy, 11(5), 429–441. https://doi.org/10.2217/imt-2018-0110
  • Zhang, R., Zhu, Z., Lv, H., Li, F., Sun, S., Li, J., & Lee, C. S. (2019). Immune checkpoint blockade mediated by a small‐molecule nanoinhibitor targeting the PD‐1/PD‐L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. Small, 15(49), 1903881. https://doi.org/10.1002/smll.201903881

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.