254
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of new oxospiro chromane quinoline-carboxylate antimalarials that arrest parasite growth at ring stage

ORCID Icon, ORCID Icon, , , , , , , , , , , , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 15485-15506 | Received 23 Aug 2022, Accepted 03 Mar 2023, Published online: 27 Mar 2023

References

  • Adigun, R. A., Malan, F. P., Balogun, M. O., & October, N. (2022). Rational optimization of dihydropyrimidinone–quinoline hybrids as plasmodium falciparum glutathione reductase inhibitors. ChemMedChem, 17(10). https://doi.org/10.1002/cmdc.202200034
  • Ahmedi, S., Pant, P., Raj, N., & Manzoor, N. (2022). Limonene inhibits virulence associated traits in Candida albicans: In-vitro and in-silico studies. Phytomedicine Plus, 2(3), 100285. https://doi.org/10.1016/j.phyplu.2022.100285
  • Amin, K., & Dannenfelser, R.-M. (2006). In vitro hemolysis: Guidance for the pharmaceutical scientist. Journal of Pharmaceutical Sciences, 95(6), 1173–1176. https://doi.org/10.1002/jps.20627
  • Bagno, A., Eustace, S. J., Johansson, L., & Scorrano, G. (1994). Relative basicity of nitrogen, oxygen, and sulfur bases. The site of protonation in sulfenamides and sulfinamides determined by nitrogen-14 NMR relaxation. The Journal of Organic Chemistry, 59(1), 232–233. https://doi.org/10.1021/jo00080a038
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Benjamin, I., Udoikono, A. D., Louis, H., Agwamba, E. C., Unimuke, T. O., Owen, A. E., & Adeyinka, A. S. (2022). Antimalarial potential of naphthalene-sulfonic acid derivatives: Molecular electronic properties, vibrational assignments, and in-silico molecular docking studies. Journal of Molecular Structure, 1264, 133298. https://doi.org/10.1016/j.molstruc.2022.133298
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Brindisi, M., Gemma, S., Kunjir, S., Di Cerbo, L., Brogi, S., Parapini, S., D'Alessandro, S., Taramelli, D., Habluetzel, A., Tapanelli, S., Lamponi, S., Novellino, E., Campiani, G., Butini, S. (2015). Synthetic spirocyclic endoperoxides: new antimalarial scaffolds. MedChemComm, 6(2), 357–362. https://doi.org/10.1039/C4MD00454J
  • Cowell, A. N., & Winzeler, E. A. (2019). Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Medicine, 11(1), 63. https://doi.org/10.1186/s13073-019-0673-3
  • Doerig, C., Rayner, J. C., Scherf, A., & Tobin, A. B. (2015). Post-translational protein modifications in malaria parasites. Nature Reviews Microbiology, 13(3), 160–172. https://doi.org/10.1038/nrmicro3402
  • Ertl, P., Altmann, E., & McKenna, J. M. (2020). The most common functional groups in bioactive molecules and how their popularity has evolved over time. Journal of Medicinal Chemistry, 63(15), 8408–8418. https://doi.org/10.1021/acs.jmedchem.0c00754
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fairhurst, R. M., & Dondorp, A. M. (2016). Artemisinin-resistant Plasmodium falciparum malaria. Microbiology Spectrum, 4(3) https://doi.org/10.1128/microbiolspec.EI10-0013-2016
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Ghatpande, N., Phal, D., Karpoormath, R., Soliman, M., Jadhav, J., Choudhari, P., & Shaikh, M. M. (2022). Synthesis, biological evaluation and molecular docking of novel n-acyl/aroyl spiro[chromane-2,4′-piperidin]-4(3H)-one as potent anti-microbial agents. Polycyclic Aromatic Compounds, 42(, 8), 4878–4894. https://doi.org/10.1080/10406638.2021.1915807
  • Gilson, P. R., Tan, C., Jarman, K. E., Lowes, K. N., Curtis, J. M., Nguyen, W., Di Rago, A. E., Bullen, H. E., Prinz, B., Duffy, S., Baell, J. B., Hutton, C. A., Subroux, H. J., Crabb, B. S., Avery, V. M., Cowman, A. F., Sleebs, B. E. (2017). Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity. Journal of Medicinal Chemistry, 60(3), 1171–1188. https://doi.org/10.1021/acs.jmedchem.6b01673
  • Goncalves, V., Brannigan, J. A., Laporte, A., Bell, A. S., Roberts, S. M., Wilkinson, A. J., Leatherbarrow, R. J., Tate, E. W. (2017). Structure-guided optimization of quinoline inhibitors of Plasmodium N-myristoyltransferase. MedChemComm, 8(1), 191–197. https://doi.org/10.1039/C6MD00531D
  • Goncalves, V., Brannigan, J. A., Whalley, D., Ansell, K. H., Saxty, B., Holder, A. A., Wilkinson, A. J., Tate, E. W., & Leatherbarrow, R. J. (2012). Discovery of plasmodium vivax N-myristoyltransferase inhibitors: Screening, synthesis, and structural characterization of their binding mode. Journal of Medicinal Chemistry, 55(7), 3578–3582. https://doi.org/10.1021/jm300040p
  • Gunaratne, R. S., Sajid, M., Ling, I. T., Tripathi, R., Pachebat, J. A., & Holder, A. A. (2000). Characterization of N-myristoyltransferase from Plasmodium falciparum. The Biochemical Journal, 348(Pt 2), 459–463. https://doi.org/10.1042/bj3480459
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389. https://doi.org/10.1021/ci800324m
  • Hema, K., Ahamad, S., Joon, H. K., Pandey, R., & Gupta, D. (2021). Atomic resolution homology models and molecular dynamics simulations of Plasmodium falciparum tubulins. ACS Omega, 6(27), 17510–17522. https://doi.org/10.1021/acsomega.1c01988
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Iyamu, I. D., Zhao, Y., Parvatkar, P. T., Roberts, B. F., Casandra, D. R., Wojtas, L., Kyle, D. E., Chakrabarti, D., Manetsch, R. (2022). Structure-activity and structure-property relationship studies of spirocyclic chromanes with antimalarial activity. Bioorganic & Medicinal Chemistry, 57, 116629. https://doi.org/10.1016/j.bmc.2022.116629
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kim, S., Lee, J., Jo, S., Brooks, C. L., Lee, H. S., & Im, W. (2017). CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. Journal of Computational Chemistry, 38(21), 1879–1886. https://doi.org/10.1002/jcc.24829
  • Konstantinidis, K., Karakasiliotis, I., Anagnostopoulos, K., & Boulougouris, G. C. (2021). On the estimation of the molecular inaccessible volume and the molecular accessible surface of a ligand in protein–ligand systems. Molecular Systems Design & Engineering, 6(11), 946–963. https://doi.org/10.1039/D1ME00053E
  • Kumar, J., Meena, P., Singh, A., Jameel, E., Maqbool, M., Mobashir, M., Shandilya, A., Tiwari, M., Hoda, N., Jayaram, B. (2016). Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. European Journal of Medicinal Chemistry, 119, 260–277. https://doi.org/10.1016/j.ejmech.2016.04.053
  • Lionta, E., Spyrou, G., Vassilatis, D., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. https://doi.org/10.2174/1568026614666140929124445
  • Madhav, H., & Hoda, N. (2021). An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. European Journal of Medicinal Chemistry, 210, 112955. https://doi.org/10.1016/j.ejmech.2020.112955
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Pal, K., Raza, M. K., Legac, J., Ataur Rahman, M., Manzoor, S., Rosenthal, P. J., & Hoda, N. (2021). Design, synthesis, crystal structure and anti-plasmodial evaluation of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives. RSC Medicinal Chemistry, 12(6), 970–981. https://doi.org/10.1039/D1MD00038A
  • Patel, K. B., & Kumari, P. (2022). A review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids. Journal of Molecular Structure, 1268, 133634. https://doi.org/10.1016/j.molstruc.2022.133634
  • Rackham, M. D., Brannigan, J. A., Moss, D. K., Yu, Z., Wilkinson, A. J., Holder, A. A., Tate, E. W., Leatherbarrow, R. J. (2013). Discovery of novel and ligand-efficient inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferase. Journal of Medicinal Chemistry, 56(1), 371–375. https://doi.org/10.1021/jm301474t
  • Rackham, M. D., Brannigan, J. A., Rangachari, K., Meister, S., Wilkinson, A. J., Holder, A. A., Leatherbarrow, R. J., & Tate, E. W. (2014). Design and synthesis of high affinity inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferases directed by ligand efficiency dependent lipophilicity (LELP). Journal of Medicinal Chemistry, 57(6), 2773–2788. https://doi.org/10.1021/jm500066b
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Roberts, B. F., Iyamu, I. D., Lee, S., Lee, E., Ayong, L., Kyle, D. E., Yuan, Y., Manetsch, R., Chakrabarti, D. (2016). Spirocyclic chromanes exhibit antiplasmodial activities and inhibit all intraerythrocytic life cycle stages. International Journal for Parasitology: Drugs and Drug Resistance, 6(1), 85–92. https://doi.org/10.1016/j.ijpddr.2016.02.004
  • Schlott, A. C., Holder, A. A., & Tate, E. W. (2018). N-myristoylation as a drug target in malaria: Exploring the role of N-myristoyltransferase substrates in the inhibitor mode of action. ACS Infectious Diseases, 4(4), 449–457. https://doi.org/10.1021/acsinfecdis.7b00203
  • Silva, R., Poiani, J., Ramos, R., Costa, J., Silva, C., Brasil, D., & Santos, C. (2019). Ligand- and structure-based virtual screening from 16-((diisobutylamino)methyl)-6α-hydroxyivouacapane-7β,17β-lactone a compound with potential anti-prostate cancer activity. Journal of the Serbian Chemical Society, 84(2), 153–174. https://doi.org/10.2298/JSC180129047S
  • Singh, A., Kalamuddin, M., Maqbool, M., Mohmmed, A., Malhotra, P., & Hoda, N. (2020). Quinoline carboxamide core moiety-based compounds inhibit P. falciparumfalcipain-2: Design, synthesis and antimalarial efficacy studies. Bioorganic Chemistry, 104514. https://doi.org/10.1016/j.bioorg.2020.104514
  • Smilkstein, M., Sriwilaijaroen, N., Kelly, J. X., Wilairat, P., & Riscoe, M. (2004). Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrobial Agents and Chemotherapy, 48(5), 1803–1806. https://doi.org/10.1128/AAC.48.5.1803-1806.2004
  • Thu, A. M., Phyo, A. P., Landier, J., Parker, D. M., & Nosten, F. H. (2017). Combating multidrug-resistant Plasmodium falciparum malaria. The FEBS Journal, 284(16), 2569–2578. https://doi.org/10.1111/febs.14127
  • Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva, F. P. Jr, (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 4574. https://doi.org/10.3390/ijms20184574
  • Turner, H. (2016). Spiroindolone NITD609 is a novel antimalarial drug that targets the P-type ATPase PfATP4. Future Medicinal Chemistry, 8(2), 227–238. https://doi.org/10.4155/fmc.15.177
  • Umar, T., Shalini, S., Raza, M. K., Gusain, S., Kumar, J., Seth, P., Tiwari, M., & Hoda, N. (2019). A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer’s disease. European Journal of Medicinal Chemistry, 175, 2–19. https://doi.org/10.1016/j.ejmech.2019.04.038
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry. https://doi.org/10.1002/jcc.21367
  • WHO. (2015). Global technical strategy for malaria 2016–2030 global malaria programme world health organization. https://www.who.int/docs/default-source/documents/global-technical-strategy-for-malaria-2016-2030.pdf?sfvrsn=c82afcc_0
  • World Health Organization. (2020). World malaria report 2020: 20 years of global progress and challenges. Geneva. ISBN 978-92-4-001579-1.
  • Wright, M. H., Clough, B., Rackham, M. D., Rangachari, K., Brannigan, J. A., Grainger, M., Moss, D. K., Bottrill, A. R., Heal, W. P., Broncel, M., Serwa, R. A., Brady, D., Mann, D. J., Leatherbarrow, R. J., Tewari, R., Wilkinson, A. J., Holder, A. A., & Tate, E. W. (2014). Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nature Chemistry, 6(2), 112–121. https://doi.org/10.1038/nchem.1830
  • Ye, F., Zhang, Z., Zhao, W., Ding, J., Wang, Y., & Dang, X. (2021). Two methods for the preparation of sitagliptin phosphate via chemical resolution and asymmetric hydrogenation. RSC Advances, 11(8), 4805–4809. https://doi.org/10.1039/D0RA10273C
  • Yu, Z., Brannigan, J. A., Moss, D. K., Brzozowski, A. M., Wilkinson, A. J., Holder, A. A., Tate, E. W., & Leatherbarrow, R. J. (2012). Design and synthesis of inhibitors of Plasmodium falciparumN-Myristoyltransferase, a promising target for antimalarial drug discovery. Journal of Medicinal Chemistry, 55(20), 8879–8890. https://doi.org/10.1021/jm301160h
  • Yu, Z., Brannigan, J. A., Rangachari, K., Heal, W. P., Wilkinson, A. J., Holder, A. A., Leatherbarrow, R. J., & Tate, E. W. (2015). Discovery of pyridyl-based inhibitors of Plasmodium falciparum N-myristoyltransferase. MedChemComm, 6(10), 1767–1772. https://doi.org/10.1039/C5MD00242G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.