195
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Exploiting the co-crystal ligands shape, features and structure-based approaches for identification of SARS-CoV-2 Mpro inhibitors

, , , , , , & show all
Pages 14325-14338 | Received 10 Nov 2022, Accepted 08 Feb 2023, Published online: 22 Mar 2023

References

  • Agbowuro, A. A., Huston, W. M., Gamble, A. B., & Tyndall, J. D. J. M. R. R. (2018). Proteases and protease inhibitors in infectious diseases. Medicinal Research Reviews, 38, 1295–1331.
  • Bhachoo, J., & Beuming, T. J. M. P.-P I. (2017). Investigating protein–peptide interactions using the Schrödinger computational suite. In Methods in molecular biology (pp. 235–54). Springer.
  • Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I., Brozell, S. R., Cerutti, D., Cheatham, T., Cruzeiro, V. W. D., Darden, T., & Duke, R. E. (2021). Amber 2021. Reference manual. San Francisco: University of California.
  • Case, D. A., Cheatham, III, T. E., Darden, T., Gohlke, H., Luo, R., Merz, Jr, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.
  • Case, D. A., Darden, T., Cheatham, III, T. E., Simmerling, C., Wang, J., Duke, R. E., Luo, R., Merz, K. M., Pearlman, D. A., Crowley, M. J. U. O. C. (2006). . AMBER (pp. 9–45). San Francisco: University of California.
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, 92, 418–423.
  • Chohan, T. A., Qian, H.-Y., Pan, Y.-L., & Chen, J.-Z. (2016). Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7. Molecular BioSystems, 12, 145–161.
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., & Liu, F. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 368, 1331–1335.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 1–13.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999–2012.
  • Elseginy, S. A. (2021). Virtual screening and structure-based 3D pharmacophore approach to identify small-molecule inhibitors of SARS-CoV-2 Mpro. Journal of Biomolecular Structure and Dynamics, 40, 1–17.
  • Gahlawat, A., Kumar, N., Kumar, R., Sandhu, H., Singh, I. P., Singh, S., Sjöstedt, A., & Garg, P. (2020). Structure-based virtual screening to discover potential lead molecules for the SARS-CoV-2 main protease. Journal of Chemical Information and Modeling, 60, 5781–5793.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10, 449–461.
  • Grant, B. J., Skjærven, L., & Yao, X. Q. (2021). The Bio3D packages for structural bioinformatics. Protein Science, 30, 20–30.
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759.
  • Hawkins, P. C., Skillman, A. G., & Nicholls, A. J. (2007). Comparison of shape-matching and docking as virtual screening tools. Journal of Medicinal Chemistry, 50(1), 74–82.
  • Hawkins, P. C., Skillman, A. G., Warren, G. L., Ellingson, B. A., & Stahl, M. T. (2010). Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. Journal of Chemical Information and Modeling, 50, 572–584.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.
  • Ibrahim, M. A., Abdelrahman, A. H., Hussien, T. A., Badr, E. A., Mohamed, T. A., EL-Seedi, H. R., Pare, P. W., Efferth, T., & Hegazy, M.-E. F. (2020). In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in Biology and Medicine, 126, 104046.
  • Imran, M., Waqar, S., Ogata, K., Ahmed, M., Noreen, Z., Javed, S., Bibi, N., Bokhari, H., Amjad, A., & Muddassar, M. J. R. A. (2020). Identification of novel bacterial urease inhibitors through molecular shape and structure based virtual screening approaches. RSC Advances, 10, 16061–16070.
  • Jiménez-Alberto, A., Ribas-Aparicio, R. M., Aparicio-Ozores, G., & Castelán-Vega, J. A. (2020). Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Computational Biology and Chemistry, 88, 107325.
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., & Zhang, B. J. N. (2020a). Structure of M. sup. pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–294.
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., & Du, X. (2020b). Structural basis for the inhibition of COVID-19 virus main protease by carmofur, an antineoplastic drug. bioRxiv, 2020–04.
  • Jorgensen, W., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926.
  • Kapusta, K., Kar, S., Collins, J. T., Franklin, L. M., Kolodziejczyk, W., Leszczynski, J., & Hill, G. A. (2021). Protein reliability analysis and virtual screening of natural inhibitors for SARS-CoV-2 main protease (Mpro) through docking, molecular mechanic & dynamic, and ADMET profiling. Journal of Biomolecular Structure & Dynamics, 39(17), 6810–6827.
  • Khan, S. S., Shen, Y., Fatmi, M. Q., Campbell, R. E., & Bokhari, H. (2021). Design and prototyping of genetically encoded arsenic biosensors based on transcriptional regulator AfArsR. Biomolecules, 11, 1276.
  • Koes, D. R., & Camacho, C. (2014). Shape‐based virtual screening with volumetric aligned molecular shapes. Journal of Computational Chemistry, 35, 1824–1834.
  • Krishna, S., Kumar, S. B., Murthy, T. K., & Murahari, M. (2021). Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy. Computers in Biology and Medicine, 134, 104455.
  • Li, Q., Nie, J., Wu, J., Zhang, L., Ding, R., Wang, H., Zhang, Y., Li, T., Liu, S., & Zhang, M. (2021). SARS-CoV-2 501Y. V2 variants lack higher infectivity but do have immune escape. Cell, 184, 2362–2371.e9.
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42, 623–628.
  • Lobo, J. M., Jiménez‐valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global ecology and Biogeography,17(2), 145–151.
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27, 221–234.
  • Madhi, S. A., Baillie, V., Cutland, C. L., Voysey, M., Koen, A. L., Fairlie, L., Padayachee, S. D., Dheda, K., Barnabas, S. L., & Bhorat, Q. E. (2021). Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B. 1.351 variant. Lancet Infectious Disease, 384, 1885–1898.
  • Mahase, E. (2021). Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. British Medical Journal Publishing Group.
  • Martinez, R., Blasina, A., Hallin, J. F., Hu, W., Rymer, I., Fan, J., Hoffman, R. L., Murphy, S., Marx, M., & Yanochko, G. (2015). Mitotic checkpoint kinase Mps1 has a role in normal physiology which impacts clinical utility. PLoS One, 10, e0138616.
  • Matsuoka, M., Kumar, A., Muddassar, M., Matsuyama, A., Yoshida, M., & Zhang, K. Y. (2017). Discovery of fungal denitrification inhibitors by targeting copper nitrite reductase from Fusarium oxysporum. Journal of Chemical Information and Modeling, 57, 203–213.
  • Mazzini, S., Musso, L., Dallavalle, S., & Artali, R. (2020). Putative SARS-CoV-2 Mpro inhibitors from an in-house library of natural and nature-inspired products: A virtual screening and molecular docking study. Molecules, 25(16), 3745.
  • Mcgann, M. (2012). FRED and HYBRID docking performance on standardized datasets. Journal of computer-aided molecular design, 26(8), 897–906.
  • Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 622898.
  • Millán-Oñate, J., Rodriguez-Morales, A. J., Camacho-Moreno, G., Mendoza-Ramírez, H., Rodríguez-Sabogal, I. A., & Álvarez-Moreno, C. (2020). A new emerging zoonotic virus of concern: The 2019 novel Coronavirus (SARS CoV-2). Infectio, 24(3), 187–192.
  • Muchmore, S. W., Souers, A. J., & Akritopoulou‐zanze, I. (2006). The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist. Chemical Biology & Drug Design, 67(2), 174–176.
  • Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M., & Yokoyama, S. (2016). SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proceedings of the National Academy of Sciences, 113(46), 12997–13002.
  • Onufriev, A., Bashford, D., & Case, D. (2004). Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics, 55(2), 383–394.
  • Paul, D., Basu, D., & Ghosh Dastidar, S. (2021). Multi-conformation representation of Mpro identifies promising candidates for drug repurposing against COVID-19. Journal of molecular modeling, 27, 1–16.
  • Pechlaner, M., Dorta, A. P., Lin, Z., Rusu, V. H., & Van Gunsteren, W. F. (2021). A method to apply bond‐angle constraints in molecular dynamics simulations. Journal of Computational Chemistry, 42(6), 418–434.
  • Phillips, J. C., Hardy, D. J., Maia, J. D., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., & Jiang, W. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of chemical physics, 153(4), 044130.
  • Poli, G., Seidel, T., & Langer, T. (2018). Conformational sampling of small molecules with iCon. Performance assessment in comparison with OMEGA. Frontiers in Chemistry, 6, 229.
  • Rathnayake, A. D., Zheng, J., Kim, Y., Perera, K. D., Mackin, S., Meyerholz, D. K., Kashipathy, M. M., Battaile, K. P., Lovell, S., & Perlman, S. (2020). 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Science translational medicine, 12(557), eabc5332.
  • Release, S. (2017). 2017. 1: Canvas. New York, NY, USA: Schrödinger, LLC.
  • Rocchia, W., Alexov, E., & Honig, B. (2001). Extending the applicability of the nonlinear Poisson − Boltzmann equation: multiple dielectric constants and multivalent ions. The Journal of Physical Chemistry B, 105(28), 6507–6514.
  • Rossetti, G. G., Ossorio, M. A., Rempel, S., Kratzel, A., Dionellis, V. S., Barriot, S., Tropia, L., Gorgulla, C., Arthanari, H., & Thiel, V. (2022). Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Scientific reports, 12, 1–9.
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of computational physics, 23(3), 327–341.
  • Sadeer, N. B., Llorent-Martínez, E. J., Bene, K., Mahomoodally, M. F., Mollica, A., Sinan, K. I., Stefanucci, A., Ruiz-Riaguas, A., Fernández-DE Córdova, M. L., & Zengin, G. (2019). Chemical profiling, antioxidant, enzyme inhibitory and molecular modelling studies on the leaves and stem bark extracts of three African medicinal plants. Journal of Pharmaceutical and Biomedical Analysis, 174, 19–33.
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of chemical theory and computation, 13(4), 1518–1524.
  • Seeliger, D., & DE Groot, B. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of computer-aided molecular design, 24(5), 417–422.
  • Shen, C., Wang, Z., Yao, X., Li, Y., Lei, T., Wang, E., Xu, L., Zhu, F., Li, D., & Hou, T. (2020). Comprehensive assessment of nine docking programs on type II kinase inhibitors: prediction accuracy of sampling power, scoring power and screening power. Briefings in bioinformatics, 21(1), 282–297.
  • Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91–98.
  • Shivakumar, D., Harder, E., Damm, W., Friesner, R. A., & Sherman, W. (2012). Improving the prediction of absolute solvation free energies using the next generation OPLS force field. Journal of chemical theory and computation, 8(8), 2553–2558.
  • Software, O. S. (2011). vROCS. Openeye Software Santa Fee.
  • Temml, V., Voss, C. V., Dirsch, V. M., & Schuster, D. (2014). Discovery of new liver X receptor agonists by pharmacophore modeling and shape-based virtual screening. Journal of chemical information and modeling,54(2), 367–371.
  • Trott, O., & Olson, A. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455–461.
  • Ullrich, S., Nitsche, C. J. B., & Letters, M. C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & medicinal chemistry letters, 30(17), 127377.
  • Vuong, W., Khan, M. B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J., Saffran, H. A., Mckay, R. T., VAN Belkum, M. J., & Joyce, M. A. (2020). Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature communications, 11(1), 1–8.
  • Wang, Y., Anirudhan, V., Du, R., Cui, Q., & Rong, L. (2021). RNA‐dependent RNA polymerase of SARS‐CoV‐2 as a therapeutic target. Journal of medical virology, 93(1), 300–310.
  • Weinzierl, R. O. J. (2021). Molecular dynamics simulations of human FOXO3 reveal intrinsically disordered regions spread spatially by intramolecular electrostatic repulsion. Biomolecules, 11, 856.
  • Yang, K. S., Ma, X. R., Ma, Y., Alugubelli, Y. R., Scott, D. A., Vatansever, E. C., Drelich, A. K., Sankaran, B., Geng, Z. Z., & Blankenship, L. R. (2021). A quick route to multiple highly potent SARS‐CoV‐2 main protease inhibitors. ChemMedChem, 16, 942–948.
  • Yoshino, R., Yasuo, N., & Sekijima, M. (2020). Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Scientific reports, 10(1), 1–8.
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.