180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The targeted next-generation sequence revealed SMAD4, AKT1, and TP53 mutations from circulating cell-free DNA of breast cancer and its effect on protein structure – A computational approach

, , , , , , & show all
Pages 15584-15597 | Received 22 Jul 2022, Accepted 06 Mar 2023, Published online: 03 Apr 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Ahmed, S., Bradshaw, A.-D., Gera, S., Dewan, M. Z., & Xu, R. (2017). The TGF-β/Smad4 signaling pathway in pancreatic carcinogenesis and its clinical significance. Journal of Clinical Medicine, 6(1), 5. https://doi.org/10.3390/jcm6010005
  • Ang, H. C., Joerger, A. C., Mayer, S., & Fersht, A. R. (2006). Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. The Journal of Biological Chemistry, 281(31), 21934–21941.
  • Aoki-Kinoshita, K. F., & Kanehisa, M. (2007). Gene annotation and pathway mapping in KEGG. In N. H. Bergman (Ed.), Comparative genomics (pp. 71–91). Humana Press. https://doi.org/10.1007/978-1-59745-515-2_6
  • Ascolani, G., Occhipinti, A., & Liò, P. (2015). Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer. PLOS Computational Biology, 11(5), e1004199. https://doi.org/10.1371/journal.pcbi.1004199
  • Auton, A., Abecasis, G. R., Committee, S., Altshuler, D. M., Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., Donnelly, P., Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles, M. E., Knoppers, B. M., Abecasis, G. R, … The 1000 Genomes Project Consortium, Corresponding authors. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74. https://doi.org/10.1038/nature15393
  • Beck, J., Urnovitz, H. B., Mitchell, W. M., & Schütz, E. (2010). Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Molecular Cancer Research, 8(3), 335–342. https://doi.org/10.1158/1541-7786.MCR-09-0314
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bindea, G., Galon, J., & Mlecnik, B. (2013). CluePedia cytoscape plug-in: Pathway insights using integrated experimental and in silico data. Bioinformatics (Oxford, England), 29(5), 661–663. https://doi.org/10.1093/bioinformatics/btt019
  • Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091–1093. https://doi.org/10.1093/bioinformatics/btp101
  • Blanden, A. R., Yu, X., Loh, S. N., Levine, A. J., & Carpizo, D. R. (2015). Reactivating mutant p53 using small molecules as zinc metallochaperones: Awakening a sleeping giant in cancer. Drug Discovery Today, 20(11), 1391–1397.
  • Blanden, A. R., Yu, X., Wolfe, A. J., Gilleran, J. A., Augeri, D. J., O’Dell, R. S., Olson, E. C., Kimball, S. D., Emge, T. J., & Movileanu, L. (2015). Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore. Molecular Pharmacology, 87(5), 825–831.
  • Bleeker, F. E., Felicioni, L., Buttitta, F., Lamba, S., Cardone, L., Rodolfo, M., Scarpa, A., Leenstra, S., Frattini, M., Barbareschi, M., Grammastro, M. D., Sciarrotta, M. G., Zanon, C., Marchetti, A., & Bardelli, A. (2008). AKT1E17K in human solid tumours. Oncogene, 27(42), 5648–5650. https://doi.org/10.1038/onc.2008.170
  • Botti, J., Djavaheri-Mergny, M., Pilatte, Y., & Codogno, P. (2006). Autophagy signaling and the cogwheels of cancer. Autophagy, 2(2), 67–73. https://doi.org/10.4161/auto.2.2.2458
  • Böttinger, E. P., Jakubczak, J. L., Haines, D. C., Bagnall, K., & Wakefield, L. M. (1997). Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7, 12-dimethylbenz-[a]-anthracene. Cancer Research, 57(24), 5564–5570.
  • Bouaoun, L., Sonkin, D., Ardin, M., Hollstein, M., Byrnes, G., Zavadil, J., & Olivier, M. (2016). TP53 variations in human cancers: New lessons from the IARC TP53 database and genomics data. Human Mutation, 37(9), 865–876.
  • Bykov, V. J. N., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K. G., & Selivanova, G. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Medicine, 8(3), 282–288. https://doi.org/10.1038/nm0302-282
  • Callahan, R., Cropp, C., Merlo, G. R., Diella, F., Venesio, T., Lidereau, R., Cappa, A. P. M., & Lisicia, D. S. (1993). Genetic and molecular heterogeneity of breast cancer cells. Clinica Chimica Acta, 217(1), 63–73. https://doi.org/10.1016/0009-8981(93)90238-Y
  • Camilli, F., Borrmann, A., Gholizadeh, S., Te Beek, T. A., Kuipers, R. K., & Venselaar, H. (2011). The future of HOPE: What can and cannot be predicted about the molecular effects of a disease causing point mutation in a protein? EMBnet.Journal. Next Generation Sequencing Data AnalysisDO, 17(1), 25. https://doi.org/10.14806/Ej.17.1.212https://journal.embnet.org/index.php/embnetjournal/article/view/212/482
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., Hostetter, G., Boguslawski, S., Moses, T. Y., Savage, S., Uhlik, M., Lin, A., Du, J., Qian, Y.-W., Zeckner, D. J., Tucker-Kellogg, G., Touchman, J., Patel, K., Mousses, S., … Thomas, J. E. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448(7152), 439–444. https://doi.org/10.1038/nature05933
  • Carvalho, C. M. B., & Lupski, J. R. (2016). Mechanisms underlying structural variant formation in genomic disorders. Nature Reviews Genetics, 17(4), 224–238. https://doi.org/10.1038/nrg.2015.25
  • Chen, C.-W., Lin, J., & Chu, Y.-W. (2013). iStable: Off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics, 14(S2), 1-14. https://doi.org/10.1186/1471-2105-14-S2-S5
  • Cheng, J., Randall, A., & Baldi, P. (2005). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins: Structure, Function, and Bioinformatics, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science (New York, N.Y.), 265(5170), 346–355. https://doi.org/10.1126/science.8023157
  • Chong, C.-F., Li, Y.-C., Wang, T.-L., & Chang, H. (2003). Stratification of adverse outcomes by preoperative risk factors in coronary artery bypass graft patients: An artificial neural network prediction model. In AMIA Annual Symposium Proceedings (vol. 2003, p. 160). American Medical Informatics Association.
  • Cline, M. S., & Karchin, R. (2011). Using bioinformatics to predict the functional impact of SNVs. Bioinformatics, 27(4), 441–448. https://doi.org/10.1093/bioinformatics/btq695
  • Cordenonsi, M., Montagner, M., Adorno, M., Zacchigna, L., Martello, G., Mamidi, A., Soligo, S., Dupont, S., & Piccolo, S. (2007). Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science (New York, N.Y.), 315(5813), 840–843. https://doi.org/10.1126/science.1135961
  • Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M., Dunning, M. J., Speed, D., Lynch, A. G., Samarajiwa, S., Yuan, Y., Gräf, S., Ha, G., Haffari, G., Bashashati, A., Russell, R., McKinney, S., Langerød, A., Green, A., Provenzano, E., Aparicio, S, … METABRIC Group. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352. https://doi.org/10.1038/nature10983
  • de Caestecker, M. P., Hemmati, P., Larisch-Bloch, S., Ajmera, R., Roberts, A. B., & Lechleider, R. J. (1997). Characterization of functional domains within Smad4/DPC4. The Journal of Biological Chemistry, 272(21), 13690–13696. https://doi.org/10.1074/jbc.272.21.13690
  • De Marco, C., Malanga, D., Rinaldo, N., De Vita, F., Scrima, M., Lovisa, S., Fabris, L., Carriero, M. V., Franco, R., Rizzuto, A., Baldassarre, G., & Viglietto, G. (2015). Mutant AKT1-E17K is oncogenic in lung epithelial cells. Oncotarget, 6(37), 39634–39650.
  • Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., & Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. The EMBO Journal, 17(11), 3091–3100. https://doi.org/10.1093/emboj/17.11.3091
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., Milacic, M., Roca, C. D., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Viteri, G., Weiser, J., … D’Eustachio, P. (2018). The reactome pathway knowledgebase. Nucleic Acids Research, 46(D1), D649–D655. https://doi.org/10.1093/nar/gkx1132
  • Fingar, D. C., & Blenis, J. (2004). Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 23(18), 3151–3171. https://doi.org/10.1038/sj.onc.1207542
  • Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., & Morris, Q. (2018). GeneMANIA update 2018. Nucleic Acids Research, 46(W1), W60–W64. https://doi.org/10.1093/nar/gky311
  • Georgescu, M.-M. (2010). PTEN tumor suppressor network in PI3K-Akt pathway control. Genes & Cancer, 1(12), 1170–1177. https://doi.org/10.1177/1947601911407325
  • Gilis, D., & Rooman, M. (1997). Predicting protein stability changes upon mutation using database-derived potentials: Solvent accessibility determines the importance of local versus non-local interactions along the sequence. Journal of Molecular Biology, 272(2), 276–290. https://doi.org/10.1006/jmbi.1997.1237
  • Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of Molecular Biology, 320(2), 369–387. https://doi.org/10.1016/S0022-2836(02)00442-4
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Guimaraes, D., & Hainaut, P. (2002). TP53: A key gene in human cancer. Biochimie, 84(1), 83–93.
  • Hata, A., & Chen, Y.-G. (2016). TGF-β signaling from receptors to Smads. Cold Spring Harbor Perspectives in Biology, 8(9), a022061. https://doi.org/10.1101/cshperspect.a022061
  • Hata, A., Lagna, G., Massagué, J., & Hemmati-Brivanlou, A. (1998). Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes & Development, 12(2), 186–197. https://doi.org/10.1101/gad.12.2.186
  • Hata, C., Nakaoka, H., Xiang, Y., Wang, D., Yang, A., Liu, D., Liu, F., Zou, Q., Zheng, K., Inoue, I., & You, H. (2019). Exploration of intermediate-sized INDELs by next-generation multigene panel testing in Han Chinese patients with breast cancer. Human Genome Variation, 6(1), 51. https://doi.org/10.1038/s41439-019-0080-8
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hyman, D. M., Smyth, L. M., Donoghue, M. T. A., Westin, S. N., Bedard, P. L., Dean, E. J., Bando, H., El-Khoueiry, A. B., Pérez-Fidalgo, J. A., Mita, A., Schellens, J. H. M., Chang, M. T., Reichel, J. B., Bouvier, N., Selcuklu, S. D., Soumerai, T. E., Torrisi, J., Erinjeri, J. P., Ambrose, H., … Taylor, B. S. (2017). AKT inhibition in solid tumors with AKT1 mutations. Journal of Clinical Oncology, 35(20), 2251–2259. https://doi.org/10.1200/JCO.2017.73.0143
  • Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer epidemiology. Biomarkers & Prevention, 19(8), 1893–1907. https://doi.org/10.1158/1055-9965.EPI-10-0437
  • Jung, K., Fleischhacker, M., & Rabien, A. (2010). Cell-free DNA in the blood as a solid tumor biomarker – A critical appraisal of the literature. Clinica Chimica Acta, 411(21), 1611–1624. https://doi.org/10.1016/j.cca.2010.07.032
  • Kalinsky, K., Hong, F., McCourt, C. K., Sachdev, J. C., Mitchell, E. P., Zwiebel, J. A., Doyle, L. A., McShane, L. M., Li, S., Gray, R. J., Rubinstein, L. V., Patton, D., Williams, P. M., Hamilton, S. R., Conley, B. A., O’Dwyer, P. J., Harris, L. N., Arteaga, C. L., Chen, A. P., & Flaherty, K. T. (2021). Effect of capivasertib in patients with an AKT1 E17K-mutated tumor: NCI-MATCH subprotocol EAY131-Y nonrandomized trial. JAMA Oncology, 7(2), 271. https://doi.org/10.1001/jamaoncol.2020.6741
  • Kalo, E., Buganim, Y., Shapira, K. E., Besserglick, H., Goldfinger, N., Weisz, L., Stambolsky, P., Henis, Y. I., & Rotter, V. (2007). Mutant p53 attenuates the SMAD-dependent transforming growth factor β1 (TGF-β1) signaling pathway by repressing the expression of TGF-β receptor type II. Molecular and Cellular Biology, 27(23), 8228–8242. https://doi.org/10.1128/MCB.00374-07
  • Kang, Y., He, W., Tulley, S., Gupta, G. P., Serganova, I., Chen, C.-R., Manova-Todorova, K., Blasberg, R., Gerald, W. L., & Massagué, J. (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proceedings of the National Academy of Sciences, 102(39), 13909–13914.
  • Katsonis, P., Koire, A., Wilson, S. J., Hsu, T.-K., Lua, R. C., Wilkins, A. D., & Lichtarge, O. (2014). Single nucleotide variations: Biological impact and theoretical interpretation: Predictors of SNV impact. Protein Science, 23(12), 1650–1666. https://doi.org/10.1002/pro.2552
  • Kim, M. S., Jeong, E. G., Yoo, N. J., & Lee, S. H. (2008). Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. British Journal of Cancer, 98(9), 1533–1535. https://doi.org/10.1038/sj.bjc.6604212
  • Kim, J., Johnson, K., Chen, H. J., Carroll, S., & Laughon, A. (1997). Drosophila mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature, 388(6639), 304–308. https://doi.org/10.1038/40906
  • Kumar, S. U., Balasundaram, A., Cathryn, R. H., Varghese, R. P. R. S. R. G., Younes, S., Zayed, H., & Doss, C. G. P. (2022). Whole-exome sequencing analysis of NSCLC reveals the pathogenic missense variants from cancer-associated genes. Computers in Biology and Medicine, 148, 105701. https://doi.org/10.1016/j.compbiomed.2022.105701
  • Kumar, S. U., & Priya Doss, C. G. (2021). Computational investigation to identify potent inhibitors of the GTPase-Kirsten RAt sarcoma virus (K-Ras) mutants G12C and G12D. Computers in Biology and Medicine, 139, 104946. https://doi.org/10.1016/j.compbiomed.2021.104946
  • Kumar, A., & Purohit, R. (2013). Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One, 8(5), e64364. https://doi.org/10.1371/journal.pone.0064364
  • Landgraf, K. E., Pilling, C., & Falke, J. J. (2008). Molecular mechanism of an oncogenic mutation that alters membrane targeting: Glu17Lys modifies the PIP lipid specificity of the AKT1 PH domain. Biochemistry, 47(47), 12260–12269. https://doi.org/10.1021/bi801683k
  • Lane, D. P. (1992). P53, guardian of the genome. Nature, 358(6381), 15–16. https://doi.org/10.1038/358015a0
  • Leary, R. J., Sausen, M., Kinde, I., Papadopoulos, N., Carpten, J. D., Craig, D., O’Shaughnessy, J., Kinzler, K. W., Parmigiani, G., Vogelstein, B., Diaz, L. A., & Velculescu, V. E. (2012). Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Science Translational Medicine, 4(162). https://doi.org/10.1126/scitranslmed.3004742
  • Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., O'Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., Tukiainen, T., Birnbaum, D. P., Kosmicki, J. A., Duncan, L. E., Estrada, K., Zhao, F., Zou, J., Pierce-Hoffman, E., Berghout, J., MacArthur, D. G, … Exome Aggregation Consortium. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature,, 536(7616), 285–291. https://doi.org/10.1038/nature19057
  • Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). 1000 genome project data processing subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
  • Li, L., Li, X., Tang, Y., Lao, Z., Lei, J., & Wei, G. (2020). Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations. Physical Chemistry Chemical Physics, 22(17), 9225–9232. https://doi.org/10.1039/C9CP06671C
  • Malkoski, S. P., & Wang, X.-J. (2012). Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Letters, 586(14), 1984–1992. https://doi.org/10.1016/j.febslet.2012.01.054
  • Massagué, J. (1996). TGFβ signaling: Receptors, transducers, and mad proteins. Cell, 85(7), 947–950. https://doi.org/10.1016/S0092-8674(00)81296-9
  • Mayrose, I. (2004). Comparison of site-specific rate-inference methods for protein sequences: Empirical Bayesian methods are superior. Molecular Biology and Evolution, 21(9), 1781–1791. https://doi.org/10.1093/molbev/msh194
  • McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., Flicek, P., & Cunningham, F. (2016). The ensembl variant effect predictor. Genome Biology, 17(1), 122. https://doi.org/10.1186/s13059-016-0974-4
  • Metzker, M. L. (2010). Sequencing technologies – The next generation. Nature Reviews Genetics, 11(1), 31–46. https://doi.org/10.1038/nrg2626
  • Meyer, L. R., Zweig, A. S., Hinrichs, A. S., Karolchik, D., Kuhn, R. M., Wong, M., Sloan, C. A., Rosenbloom, K. R., Roe, G., Rhead, B., Raney, B. J., Pohl, A., Malladi, V. S., Li, C. H., Lee, B. T., Learned, K., Kirkup, V., Hsu, F., Heitner, S., … Kent, W. J. (2012). The UCSC genome browser database: Extensions and updates 2013. Nucleic Acids Research, 41(D1), D64–D69. https://doi.org/10.1093/nar/gks1048
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Miyazono, K. (2000). TGF-β signaling by Smad proteins. Cytokine & Growth Factor Reviews, 11(1), 15–22. https://doi.org/10.1016/S1359-6101(99)00025-8
  • Mizushima, N., & Levine, B. (2020). Autophagy in human diseases. The New England Journal of Medicine, 383(16), 1564–1576. https://doi.org/10.1056/NEJMra2022774
  • Moayyeri, A., Hammond, C. J., Hart, D. J., & Spector, T. D. (2013). The UK adult twin registry (TwinsUK Resource). Twin Research and Human Genetics, 16(1), 144–149. https://doi.org/10.1017/thg.2012.89
  • Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., & Morris, Q. (2008). GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function. Genome Biology, 9(1), S4. https://doi.org/10.1186/gb-2008-9-s1-s4
  • Nagasaki, M., Yasuda, J., Katsuoka, F., Nariai, N., Kojima, K., Kawai, Y., Yamaguchi-Kabata, Y., Yokozawa, J., Danjoh, I., Saito, S., Sato, Y., Mimori, T., Tsuda, K., Saito, R., Pan, X., Nishikawa, S., Ito, S., Kuroki, Y., Yamamoto, M, … ToMMo Japanese Reference Panel Project. (2015). Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nature Communications, 6(1), 8018. https://doi.org/10.1038/ncomms9018
  • Olotu, F. A., & Soliman, M. E. S. (2018). From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition. Journal of Cellular Biochemistry, 119(3), 2646–2652. https://doi.org/10.1002/jcb.26430
  • Pant, V., Xiong, S., Jackson, J. G., Post, S. M., Abbas, H. A., Quintás-Cardama, A., Hamir, A. N., & Lozano, G. (2013). The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes & Development, 27(17), 1857–1867. https://doi.org/10.1101/gad.227249.113
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Petiot, A., Ogier-Denis, E., Blommaart, E. F. C., Meijer, A. J., & Codogno, P. (2000). Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. The Journal of Biological Chemistry, 275(2), 992–998. https://doi.org/10.1074/jbc.275.2.992
  • Petrova, S. S., & Solov’ev, A. D. (1997). The origin of the method of steepest descent. Historia Mathematica, 24(4), 361–375. https://doi.org/10.1006/hmat.1996.2146
  • Rudolph, M., Anzeneder, T., Schulz, A., Beckmann, G., Byrne, A. T., Jeffers, M., Pena, C., Politz, O., Köchert, K., Vonk, R., & Reischl, J. (2016). AKT1 E17K mutation profiling in breast cancer: Prevalence, concurrent oncogenic alterations, and blood-based detection. BMC Cancer, 16(1), 622. https://doi.org/10.1186/s12885-016-2626-1
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schutte, M., Hruban, R. H., Hedrick, L., Cho, K. R., Nadasdy, G. M., Weinstein, C. L., Bova, G. S., Isaacs, W. B., Cairns, P., & Nawroz, H. (1996). DPC4 gene in various tumor types. Cancer Research, 56(11), 2527–2530.
  • Schwarzenbach, H., Hoon, D. S. B., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer, 11(6), 426–437. https://doi.org/10.1038/nrc3066
  • Shaw, J. A., Page, K., Blighe, K., Hava, N., Guttery, D., Ward, B., Brown, J., Ruangpratheep, C., Stebbing, J., Payne, R., Palmieri, C., Cleator, S., Walker, R. A., & Coombes, R. C. (2012). Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Research, 22(2), 220–231. https://doi.org/10.1101/gr.123497.111
  • Shigemizu, D., Miya, F., Akiyama, S., Okuda, S., Boroevich, K. A., Fujimoto, A., Nakagawa, H., Ozaki, K., Niida, S., Kanemura, Y., Okamoto, N., Saitoh, S., Kato, M., Yamasaki, M., Matsunaga, T., Mutai, H., Kosaki, K., & Tsunoda, T. (2018). IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis. Scientific Reports, 8(1), 5608. https://doi.org/10.1038/s41598-018-23978-z
  • Shimada, K., Nakajima, A., Ikeda, K., Ishibashi, K., Shimizu, N., & Ito, K. (2011). CD47 regulates the TGF-β signaling pathway in osteoblasts and is distributed in Meckel’s cartilage. Journal of Oral Science, 53(2), 169–175. https://doi.org/10.2334/josnusd.53.169
  • Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., Baselga, J., & Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344(11), 783–792. https://doi.org/10.1056/NEJM200103153441101
  • Smith, C. L., & O’Malley, B. W. (2004). Coregulator function: A key to understanding tissue specificity of selective receptor modulators. Endocrine Reviews, 25(1), 45–71. https://doi.org/10.1210/er.2003-0023
  • Smyth, L. M., Zhou, Q., Nguyen, B., Yu, C., Lepisto, E. M., Arnedos, M., Hasset, M. J., Lenoue-Newton, M. L., Blauvelt, N., & Dogan, S. (2020). Characteristics and outcome of AKT1 E17K-mutant breast cancer defined through AACR project GENIE, a clinicogenomic registry. Cancer Discovery, 10(4), 526–535.
  • Stein, Y., Rotter, V., & Aloni-Grinstein, R. (2019). Gain-of-function mutant p53: All the roads lead to tumorigenesis. International Journal of Molecular Sciences, 20(24), 6197.
  • Stemke-Hale, K., Gonzalez-Angulo, A. M., Lluch, A., Neve, R. M., Kuo, W.-L., Davies, M., Carey, M., Hu, Z., Guan, Y., Sahin, A., Symmans, W. F., Pusztai, L., Nolden, L. K., Horlings, H., Berns, K., Hung, M.-C., van de Vijver, M. J., Valero, V., Gray, J. W., … Hennessy, B. T. (2008). An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Research, 68(15), 6084–6091. https://doi.org/10.1158/0008-5472.CAN-07-6854
  • Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., Nik-Zainal, S., Martin, S., Varela, I., Bignell, G. R., Yates, L. R., Papaemmanuil, E., Beare, D., Butler, A., Cheverton, A., Gamble, J., Hinton, J., Jia, M., Jayakumar, A., Stratton, M. R, … The Oslo Breast Cancer Consortium (OSBREAC). (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404. https://doi.org/10.1038/nature11017
  • Stuelten, C. H., Buck, M. B., Dippon, J., Roberts, A. B., Fritz, P., & Knabbe, C. (2006). Smad4-expression is decreased in breast cancer tissues: A retrospective study. BMC Cancer, 6(1), 25. https://doi.org/10.1186/1471-2407-6-25
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Tavtigian, S. V., Deffenbaugh, A. M., Yin, L., Judkins, T., Scholl, T., Samollow, P. B., de Silva, D., Zharkikh, A., & Thomas, A. (2006). Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. Journal of Medical Genetics, 43(4), 295–305. https://doi.org/10.1136/jmg.2005.033878
  • ten Dijke, P., Miyazono, K., & Heldin, C.-H. (2000). Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends in Biochemical Sciences, 25(2), 64–70. https://doi.org/10.1016/S0968-0004(99)01519-4
  • Thirumal Kumar, D., Jain, N., Evangeline, J., Kamaraj, B., Siva, R., Zayed, H., & George Priya Doss, C. (2019). A computational approach for investigating the mutational landscape of RAC-alpha serine/threonine-protein kinase (AKT1) and screening inhibitors against the oncogenic E17K mutation causing breast cancer. Computers in Biology and Medicine, 115, 103513. https://doi.org/10.1016/j.compbiomed.2019.103513
  • Thirumal Kumar, D., Udhaya Kumar, S., Jain, N., Sowmya, B., Balsekar, K., Siva, R., Kamaraj, B., Sidenna, M., George Priya Doss, C., & Zayed, H. (2022). Computational structural assessment of breast cancer type 1 susceptibility protein (BRCA1) and BRCA1-associated ring domain protein 1 (BARD1) mutations on the protein-protein interface. Advances in Protein Chemistry and Structural Biology, 130, 375–397. https://doi.org/10.1016/bs.apcsb.2022.02.003
  • Thirumal Kumar, D., Udhaya Kumar, S., Magesh, R., & George Priya Doss, C. (2021). Investigating mutations at the hotspot position of the ERBB2 and screening for the novel lead compound to treat breast cancer – A computational approach. Advances in Protein Chemistry and Structural Biology, 123, 49–71. https://doi.org/10.1016/bs.apcsb.2020.10.001
  • Topham, C. M., Srinivasan, N., & Blundell, T. L. (1997). Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Engineering Design and Selection, 10(1), 7–21. https://doi.org/10.1093/protein/10.1.7
  • Troxell, M. (2012). PIK3CA/AKT1 mutations in breast carcinoma: A comprehensive review of experimental and clinical studies. Journal of Clinical and Experimental Pathology, 1, 002.
  • Udhaya Kumar, S., Kamaraj, B., Varghese, R. P., Preethi, V. A., Bithia, R., & George Priya Doss, C. (2022). Mutations in G6PC2 gene with increased risk for development of type 2 diabetes: Understanding via computational approach. Advances in Protein Chemistry and Structural Biology, 130, 351–373. https://doi.org/10.1016/bs.apcsb.2022.02.005
  • Udhaya Kumar, S., Thirumal Kumar, D., Mandal, P. D., Sankar, S., Haldar, R., Kamaraj, B., Walter, C. E. J., Siva, R., George Priya Doss, C., & Zayed, H. (2020). Comprehensive in silico screening and molecular dynamics studies of missense mutations in Sjogren-Larsson syndrome associated with the ALDH3A2 gene. Advances in Protein Chemistry and Structural Biology, 120, 349–377. https://doi.org/10.1016/bs.apcsb.2019.11.004
  • Uk, S., Tk, D.,, Doss, C. G. P., Zayed, H., (2022). Mutational landscape of K-Ras substitutions at 12th position-a systematic molecular dynamics approach. Journal of Biomolecular Structure & Dynamics, 40(4), 1571–1585. https://doi.org/10.1080/07391102.2020.1830177
  • Vadlakonda, L., Pasupuleti, M., & Pallu, R. (2013). Role of PI3K-AKT-mTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Frontiers in Oncology, 3, 85. https://doi.org/10.3389/fonc.2013.00085
  • van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., Scott, W. R. P., & Tironi, I. G. (1996). Biomolecular simulation: The GROMOS96 manual and user guide. Vdf Hochschulverlag AG an Der ETH Zürich, Zürich, 86, 1–1044.
  • Vander Ark, A., Cao, J., & Li, X. (2018). TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling, 52, 112–120. https://doi.org/10.1016/j.cellsig.2018.09.002
  • Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M., & Ng, P. C. (2016). SIFT missense predictions for genomes. Nature Protocols, 11(1), 1–9. https://doi.org/10.1038/nprot.2015.123
  • Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Reviews Cancer, 2(7), 489–501. https://doi.org/10.1038/nrc839
  • Wang, Y., Jia, R., & Tan, W. (2021). The molecular mechanism behind protein kinase B natural mutant E17K affecting the allosteric inhibitor sensitivity: A molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(9), 3158–3171. https://doi.org/10.1080/07391102.2020.1769731
  • Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H., Wong, C. H., Khor, C. C., Petric, R., Hibberd, M. L., & Nagarajan, N. (2012). LoFreq: A sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Research, 40(22), 11189–11201. https://doi.org/10.1093/nar/gks918
  • Wu, L., Wu, Y., Gathings, B., Wan, M., Li, X., Grizzle, W., Liu, Z., Lu, C., Mao, Z., & Cao, X. (2003). Smad4 as a transcription corepressor for estrogen receptor α. The Journal of Biological Chemistry, 278(17), 15192–15200. https://doi.org/10.1074/jbc.M212332200
  • Yesilöz, Ü., Kirches, E., Hartmann, C., Scholz, J., Kropf, S., Sahm, F., Nakamura, M., & Mawrin, C. (2017). Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro-Oncology, 19(8), 1088–1096. https://doi.org/10.1093/neuonc/nox018
  • Yokota, T., Matsumoto, S., Yoshimoto, M., Kasumi, F., Akiyama, F., Sakamoto, G., Nakamura, Y., & Emi, M. (1997). Mapping of a breast cancer tumor suppressor gene locus to a 4‐cM interval on chromosome 18q21. Japanese Journal of Cancer Research: Gann, 88(10), 959–964.
  • Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., Billis, K., Cummins, C., Gall, A., Girón, C. G., Gil, L., Gordon, L., Haggerty, L., Haskell, E., Hourlier, T., Izuogu, O. G., Janacek, S. H., Juettemann, T., To, J. K., … Flicek, P. (2018). Ensembl 2018. Nucleic Acids Research, 46(D1), D754–D761. https://doi.org/10.1093/nar/gkx1098
  • Zhang, Y. E. (2009). Non-Smad pathways in TGF-β signaling. Cell Research, 19(1), 128–139. https://doi.org/10.1038/cr.2008.328
  • Zhao, M., Mishra, L., & Deng, C.-X. (2018). The role of TGF-β/SMAD4 signaling in cancer. International Journal of Biological Sciences, 14, 111–123. https://doi.org/10.7150/ijbs.23230

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.