160
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Delineating the impact of pathogenic mutations on the conformational dynamics of HDL’s vital protein ApoA1: a combined computational and molecular dynamic simulation approach

&
Pages 15661-15681 | Received 09 Feb 2023, Accepted 09 Mar 2023, Published online: 21 Mar 2023

References

  • Abdel-Razek, O., Sadananda, S. N., Li, X., Cermakova, L., Frohlich, J., & Brunham, L. R. (2018). Increased prevalence of clinical and subclinical atherosclerosis in patients with damaging mutations in ABCA1 or APOA1. Journal of Clinical Lipidology, 12(1), 116–121. https://doi.org/10.1016/j.jacl.2017.10.010
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Abreu, P. A., Carvalho, K. d. L., Rabelo, V. W. H., & Castro, H. C. (2019). Computational strategy for visualizing structures and teaching biochemistry. Biochemistry and Molecular Biology Education, 47(1), 76–84. https://doi.org/10.1002/bmb.21199
  • AlAjmi, M. F., Khan, S., Choudhury, A., Mohammad, T., Noor, S., Hussain, A., Lu, W., Eapen, M. S., Chimankar, V., Hansbro, P. M., Sohal, S. S., Elasbali, A. M., & Hassan, M. I. (2021). Impact of deleterious mutations on structure, function and stability of serum/glucocorticoid regulated kinase 1: A gene to diseases correlation. Frontiers in Molecular Biosciences, 8(November), 1–14. https://doi.org/10.3389/fmolb.2021.780284
  • Amir, M., Ahamad, S., Mohammad, T., Jairajpuri, D. S., Hasan, G. M., Dohare, R., Islam, A., Ahmad, F., & Hassan, M. I. (2021). Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma. Journal of Biomolecular Structure & Dynamics, 39(1), 35–44. https://doi.org/10.1080/07391102.2019.1705186
  • Amir, M., Mohammad, T., Prasad, K., Hasan, G. M., Kumar, V., Dohare, R., Islam, A., Ahmad, F., & Imtaiyaz Hassan, M. (2020). Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). Journal of Biomolecular Structure & Dynamics, 38(15), 4625–4634. https://doi.org/10.1080/07391102.2019.1682052
  • Baserova, V. B., & Dergunov, A. D. (2021). Interaction of lipid-free apolipoprotein A-I with cholesterol revealed by molecular modeling. Biochimica et Biophysica Acta. Proteins and Proteomics, 1869(5), 140614. https://doi.org/10.1016/j.bbapap.2021.140614
  • Bedi, S., Morris, J., Shah, A., Hart, R. C., Gray Jerome, W., Aller, S. G., Tang, C., Vaisar, T., Bornfeldt, K. E., Segrest, J. P., Heinecke, J. W., & Sean Davidson, W. (2022). Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. Journal of Lipid Research, 63(3), 100168. https://doi.org/10.1016/j.jlr.2022.100168
  • Beg, M., Shivangi, A., Thakur, S. C., & Meena, L. S. (2018). Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival. Advances in Bioinformatics, 2018, 6152014. https://doi.org/10.1155/2018/6152014
  • Ben Chorin, A., Masrati, G., Kessel, A., Narunsky, A., Sprinzak, J., Lahav, S., Ashkenazy, H., & Ben-Tal, N. (2020). ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Science, 29(1), 258–267. https://doi.org/10.1002/pro.3779
  • Ben-Aicha, S., Badimon, L., & Vilahur, G. (2020). Advances in HDL: Much more than lipid transporters. International Journal of Molecular Sciences, 21(3), 732. https://doi.org/10.3390/ijms21030732
  • Bhale, A. S., & Venkataraman, K. (2022). Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 154(August), 113634. https://doi.org/10.1016/j.biopha.2022.113634
  • Bibow, S., Polyhach, Y., Eichmann, C., Chi, C. N., Kowal, J., Albiez, S., McLeod, R. A., Stahlberg, H., Jeschke, G., Güntert, P., & Riek, R. (2017). Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nature Structural & Molecular Biology, 24(2), 187–193. https://doi.org/10.1038/nsmb.3345
  • Brewer, H. B., Fairwell, T., LaRue, A., Ronan, R., Houser, A., & Bronzert, T. J. (1978). The amino acid sequence of human Apoa-I, an apolipoprotein isolated from high density lipoproteins. Biochemical and Biophysical Research Communications, 80(3), 623–630. https://doi.org/10.1016/0006-291X(78)91614-5
  • Brubaker, G., Lorkowski, S. W., Gulshan, K., Hazen, S. L., Gogonea, V., & Smith, J. D. (2020). First eight residues of apolipoprotein A-I mediate the C-terminus control of helical bundle unfolding and its lipidation. PLoS One, 15(1), 1–14. https://doi.org/10.1371/journal.pone.0221915
  • Bruns, G. A. P., Karathanasis, S. K., & Breslow, J. L. (1984). Human apolipoprotein A-I-C-III gene complex is located on chromosome 11. Arteriosclerosis, 4(2), 97–102. https://doi.org/10.1161/01.ATV.4.2.97
  • Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P. L., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics. 14(Suppl 3), S6. https://doi.org/10.1186/1471-2164-14-S3-S6
  • Chen, Y., Lu, H., Zhang, N., Zhu, Z., Wang, S., & Li, M. (2020). PremPS: Predicting the impact of missense mutations on protein stability. PLoS Computational Biology, 16(December), 1–22. https://doi.org/10.1371/journal.pcbi.1008543
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Choudhury, A., Mohammad, T., Samarth, N., Hussain, A., Rehman, M. T., Islam, A., Alajmi, M. F., Singh, S., & Hassan, M. I. (2021). Structural genomics approach to investigate deleterious impact of nsSNPs in conserved telomere maintenance component 1. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-89450-7
  • Chroni, A., Liu, T., Gorshkova, I., Kan, H. Y., Uehara, Y., Von Eckardstein, A., & Zannis, V. I. (2003). The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. The Journal of Biological Chemistry, 278(9), 6719–6730. https://doi.org/10.1074/jbc.M205232200
  • Cochran, B. J., Ong, K. L., Manandhar, B., & Rye, K. A. (2021). APOA1: A protein with multiple therapeutic functions. Current Atherosclerosis Reports, 23(3), 11. https://doi.org/10.1007/s11883-021-00906-7
  • Cooke, A. L., Morris, J., Melchior, J. T., Street, S. E., Gray Jerome, W., Huang, R., Herr, A. B., Smith, L. E., Segrest, J. P., Remaley, A. T., Shah, A. S., Thompson, T. B., & Sean Davidson, W. (2018). A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. Journal of Lipid Research, 59(7), 1244–1255. https://doi.org/10.1194/jlr.M085332
  • Davidson, W. S., Hazlett, T., Mantulin, W. W., & Jonas, A. (1996). The role of apolipoprotein AI domains in lipid binding. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13605–13610. https://doi.org/10.1073/pnas.93.24.13605
  • Duell, P. B., Oram, J. F., & Bierman, E. L. (1991). Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes, 40(3), 377–384. https://doi.org/10.2337/diab.40.3.377
  • Duka, A., Fotakis, P., Georgiadou, D., Kateifides, A., Tzavlaki, K., Von Eckardstein, L., Stratikos, E., Kardassis, D., & Zannis, V. I. (2013). ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. Journal of Lipid Research, 54(1), 107–115. https://doi.org/10.1194/jlr.M030114
  • Frank, P. G., & Marcel, Y. L. (2000). Apolipoprotein A-I: Structure-function relationships. Journal of Lipid Research, 41(6), 853–872.
  • Gorshkova, I. N., Mei, X., & Atkinson, D. (2018). Arginine 123 of apolipoprotein A-I is essential for lecithin:cholesterol acyltransferase activity. Journal of Lipid Research, 59(2), 348–356. https://doi.org/10.1194/jlr.M080986
  • Hou, Q., Kwasigroch, J. M., Rooman, M., & Pucci, F. (2020). SOLart: A structure-based method to predict protein solubility and aggregation. Bioinformatics, 36(5), 1445–1452. https://doi.org/10.1093/bioinformatics/btz773
  • Jackson, A. O., Rahman, G. A., & Long, S. (2021). Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: The new perspective. Molecular and Cellular Biochemistry, 476(8), 3065–3078. https://doi.org/10.1007/s11010-020-04037-6
  • Laimer, J., Hiebl-Flach, J., Lengauer, D., & Lackner, P. (2016). MAESTROweb: A web server for structure-based protein stability prediction. Bioinformatics (Oxford, England), 32(9), 1414–1416. https://doi.org/10.1093/bioinformatics/btv769
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Laurenzi, T., Parravicini, C., Palazzolo, L., Guerrini, U., Gianazza, E., Calabresi, L., & Eberini, I. (2021). RHDL modeling and the anchoring mechanism of LCAT activation. Journal of Lipid Research, 62, 100006. https://doi.org/10.1194/JLR.RA120000843
  • Law, S. W., Gray, G., & Brewer, H. B. (1983). cDNA cloning of human apoA-I: Amino acid sequence of preproapoA-I. Biochemical and Biophysical Research Communications, 112(1), 257–264. https://doi.org/10.1016/0006-291X(83)91824-7
  • Liu, M., Mei, X., Herscovitz, H., & Atkinson, D. (2019). N-terminal mutation of apoA-I and interaction with ABCA1 reveal mechanisms of nascent HDL biogenesis. Journal of Lipid Research, 60(1), 44–57. https://doi.org/10.1194/jlr.M084376
  • López-Ferrando, V., Gazzo, A., De La Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313
  • Lyssenko, N. N., Hata, M., Dhanasekaran, P., Nickel, M., Nguyen, D., Chetty, P. S., Saito, H., Lund-Katz, S., & Phillips, M. C. (2012). Influence of C-terminal α-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality. Biochimica et Biophysica Acta, 1821(3), 456–463. https://doi.org/10.1016/j.bbalip.2011.07.020
  • Maccarthy, E. A., Zhang, C., Zhang, Y., & Kc, D. B. (2022). GPU-I-TASSER: A GPU accelerated I-TASSER protein structure prediction tool. Bioinformatics, 38(6), 1754–1755. https://doi.org/10.1093/bioinformatics/btab871
  • Malekmohammad, K., Bezsonov, E. E., & Rafieian-Kopaei, M. (2021). Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Frontiers in Cardiovascular Medicine, 8(September), 1–16. https://doi.org/10.3389/fcvm.2021.707529
  • Mashayekhi, G., Vant, J., Polavarapu, A., Ourmazd, A., & Singharoy, A. (2022). Energy landscape of the SARS-CoV-2 reveals extensive conformational heterogeneity. Current Research in Structural Biology, 4(July), 68–77. https://doi.org/10.1016/j.crstbi.2022.02.001
  • Mei, X., & Atkinson, D. (2011a). Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization. In Journal of Biological Chemistry, 286(44), 38570–38582. https://doi.org/10.1074/jbc.M111.260422
  • Mei, X., & Atkinson, D. (2011b). Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization. The Journal of Biological Chemistry, 286(44), 38570–38582. https://doi.org/10.1074/jbc.M111.260422
  • Mei, X., & Atkinson, D. (2015). Lipid-free apolipoprotein A-I structure: Insights into HDL formation and atherosclerosis development. Archives of Medical Research, 46(5), 351–360. https://doi.org/10.1016/j.arcmed.2015.05.012
  • Mishra, V. K., Palgunachari, M. N., Datta, G., Phillips, M. C., Lund-Katz, S., Adeyeye, S. O., Segrest, J. P., & Anantharamaiah, G. M. (1998). Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic α-helixes. Biochemistry, 37(28), 10313–10324. https://doi.org/10.1021/bi980042o
  • Mohammad, T., Amir, M., Prasad, K., Batra, S., Kumar, V., Hussain, A., Rehman, M. T., AlAjmi, M. F., & Hassan, M. I. (2020). Impact of amino acid substitution in the kinase domain of Bruton tyrosine kinase and its association with X-linked agammaglobulinemia. International Journal of Biological Macromolecules, 164, 2399–2408. https://doi.org/10.1016/j.ijbiomac.2020.08.057
  • Naushad, S. M., Janaki Ramaiah, M., Kutala, V. K., Hussain, T., & Alrokayan, S. A. (2021). Pharmacogenetic determinants of thiopurines in an Indian cohort. Pharmacological Reports, 73(1), 278–287. https://doi.org/10.1007/s43440-020-00158-3
  • Niroula, A., Urolagin, S., & Vihinen, M. (2015). PON-P2: Prediction method for fast and reliable identification of harmful variants. PLoS One. 10(2), 1–17. https://doi.org/10.1371/journal.pone.0117380
  • Oda, M. N. (2017). Lipid-free apoA-I structure – Origins of model diversity. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1862(2), 221–233. https://doi.org/10.1016/j.bbalip.2016.11.010
  • Paladin, L., Piovesan, D., & Tosatto, S. C. E. (2017). SODA: Prediction of protein solubility from disorder and aggregation propensity. Nucleic Acids Research, 45(W1), W236–W240. https://doi.org/10.1093/nar/gkx412
  • Palgunachari, M. N., Mishra, V. K., Lund-Katz, S., Phillips, M. C., Adeyeye, S. O., Alluri, S., Anantharamaiah, G. M., & Segrest, J. P. (1996). Only the two end helixes of eight tandem amphipathic helical domains of human Apo A-I have significant lipid affinity: Implications for HDL assembly. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(2), 328–338. https://doi.org/10.1161/01.ATV.16.2.328
  • Pandurangan, A. P., Ochoa-Montaño, B., Ascher, D. B., & Blundell, T. L. (2017). SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Research, 45(W1), W229–W235. https://doi.org/10.1093/nar/gkx439
  • Parra, R. G., Schafer, N. P., Radusky, L. G., Tsai, M. Y., Guzovsky, A. B., Wolynes, P. G., & Ferreiro, D. U. (2016). Protein Frustratometer 2: A tool to localize energetic frustration in protein molecules, now with electrostatics. Nucleic Acids Research, 44(W1), W356–W360. https://doi.org/10.1093/NAR/GKW304
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H. J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 5918. https://doi.org/10.1038/s41467-020-19669-x
  • Petrosino, M., Novak, L., Pasquo, A., Chiaraluce, R., Turina, P., Capriotti, E., & Consalvi, V. (2021). Analysis and interpretation of the impact of missense variants in cancer. International Journal of Molecular Sciences, 22(11), 5416. https://doi.org/10.3390/ijms22115416
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(W1), 314–319. https://doi.org/10.1093/nar/gku411
  • Pourmousa, M., Song, H. D., He, Y., Heinecke, J. W., Segrest, J. P., & Pastor, R. W. (2018). Tertiary structure of apolipoprotein A-I in nascent high-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 115(20), 5163–5168. https://doi.org/10.1073/pnas.1721181115
  • Pownall, H. J., Rosales, C., Gillard, B. K., & Gotto, A. M. (2021). High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nature Reviews. Cardiology, 18(10), 712–723. https://doi.org/10.1038/s41569-021-00538-z
  • Rodrigues, C. H. M., Myung, Y., Pires, D. E. V., & Ascher, D. B. (2019). MCSM-PPI2: Predicting the effects of mutations on protein-protein interactions. Nucleic Acids Research, 47(W1), W338–W344. https://doi.org/10.1093/nar/gkz383
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2021). DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Science, 30(1), 60–69. https://doi.org/10.1002/pro.3942
  • Savojardo, C., Fariselli, P., Martelli, P. L., & Casadio, R. (2016). INPS-MD: A web server to predict stability of protein variants from sequence and structure. Bioinformatics, 32(16), 2542–2544. https://doi.org/10.1093/bioinformatics/btw192
  • Sen, N., Anishchenko, I., Bordin, N., Sillitoe, I., Velankar, S., Baker, D., & Orengo, C. (2022). Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs. Briefings in Bioinformatics, 23(4), 1–15. https://doi.org/10.1093/bib/bbac187
  • Shafie, A., Khan, S., Batra, S., Anjum, F., Mohammad, T., Alam, S., Yadav, D. K., Islam, A., & Hassan, M. I. (2021). Investigating single amino acid substitutions in PIM1 kinase: A structural genomics approach. PLoS One, 16(October), 1–17. https://doi.org/10.1371/journal.pone.0258929
  • Shahid, M., Azfaralariff, A., Tufail, M., Hus, N., Najm, A. A., Firasat, S., Zubair, M., Fazry, S., & Law, D. (2022). Screening of high-risk deleterious missense variations in the CYP1B1 gene implicated in the pathogenesis of primary congenital glaucoma: A comprehensive in silico approach. PeerJ, 10, e14132. https://doi.org/10.7717/peerj.14132
  • Sorci-Thomas, M., Kearns, M. W., & Lee, J. P. (1993). Apolipoprotein A-I domains involved in lecithin-cholesterol acyltransferase activation. Structure:function relationships. The Journal of Biological Chemistry, 268(28), 21403–21409. https://doi.org/10.1016/S0021-9258(19)36938-8
  • Su, X., & Peng, D. (2020). The exchangeable apolipoproteins in lipid metabolism and obesity. Clinica Chimica Acta, 503(139), 128–135. https://doi.org/10.1016/j.cca.2020.01.015
  • Tang, H., & Thomas, P. D. (2016). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics, 32(14), 2230–2232. https://doi.org/10.1093/bioinformatics/btw222
  • Tietjen, I., Hovingh, G. K., Singaraja, R., Radomski, C., McEwen, J., Chan, E., Mattice, M., Legendre, A., Kastelein, J. J. P., & Hayden, M. R. (2012). Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochimica et Biophysica Acta, 1821(3), 416–424. https://doi.org/10.1016/j.bbalip.2011.08.006
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Venselaar, H., Te Beek, T. A. H., Kuipers, R. K. P., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548. https://doi.org/10.1186/1471-2105-11-548
  • Wang, G. (2002). How the lipid-free structure of the N-terminal truncated human apoA-I converts to the lipid-bound form: New insights from NMR and X-ray structural comparison. FEBS Letters, 529(2–3), 157–161. https://doi.org/10.1016/S0014-5793(02)03354-9
  • Wang, L., Tu, H., Zeng, L., Gao, R., Luo, S., & Xiong, C. (2022). Identification and in silico analysis of nonsense SNPs of human colorectal cancer protein. Journal of Oleo Science, 71(3), 363–370. https://doi.org/10.5650/jos.ess21313
  • Wolska, A., Reimund, M., Sviridov, D. O., Amar, M. J., & Remaley, A. T. (2021). Apolipoprotein mimetic peptides: Potential new therapies for cardiovascular diseases. Cells, 10(3), 597–519. https://doi.org/10.3390/cells10030597
  • Xu, X., Song, Z., Mao, B., & Xu, G. (2022). Apolipoprotein A1-related proteins and reverse cholesterol transport in antiatherosclerosis therapy: Recent progress and future perspectives. Cardiovascular Therapeutics, 2022, 4610834. https://doi.org/10.1155/2022/4610834
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181. https://doi.org/10.1093/nar/gkv342
  • Yelamanchili, D., Liu, J., Gotto, A. M., Hurley, A. E., Lagor, W. R., Gillard, B. K., Davidson, W. S., Pownall, H. J., & Rosales, C. (2020). Highly conserved amino acid residues in apolipoprotein A1 discordantly induce high density lipoprotein assembly in vitro and in vivo. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1865(12), 158794. https://doi.org/10.1016/j.bbalip.2020.158794
  • Zamanian-Daryoush, M., Lindner, D., Tallant, T. C., Wang, Z., Buffa, J., Klipfell, E., Parker, Y., Hatala, D., Parsons-Wingerter, P., Rayman, P., Yusufishaq, M. S. S., Fisher, E. A., Smith, J. D., Finke, J., DiDonato, J. A., & Hazen, S. L. (2013). The cardioprotective protein apolipoprotein a1 promotes potent anti-tumorigenic effects. The Journal of Biological Chemistry, 288(29), 21237–21252. https://doi.org/10.1074/jbc.M113.468967
  • Zanoni, P., & von Eckardstein, A. (2020). Inborn errors of apolipoprotein A-I metabolism: Implications for disease, research and development. Current Opinion in Lipidology, 31(2), 62–70. https://doi.org/10.1097/MOL.0000000000000667
  • Zhu, H. L., & Atkinson, D. (2004). Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I. Biochemistry, 43(41), 13156–13164. https://doi.org/10.1021/bi0487894

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.