165
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational and in vitro analyses to identify the anticoagulant regions of Echicetin, a snake venom anticoagulant C-type lectin (snaclec): possibility to develop anticoagulant peptide therapeutics?

, , , &
Pages 15569-15583 | Received 14 Nov 2022, Accepted 05 Mar 2023, Published online: 30 Mar 2023

References

  • Almeida, J., Resende, L., Watanabe, R. K., Carregari, V. C., Huancahuire-Vega, S., da S Caldeira, C. A., Coutinho-Neto, A., Soares, A. M., Vale, N., de C. Gomes, P. A., Marangoni, S., de A. Calderon, L., & Da Silva, S. L. (2017). Snake venom peptides and low mass proteins: Molecular tools and therapeutic agents. Current Medicinal Chemistry, 24(30), 3254–3282.
  • Arlinghaus, F. T., & Eble, J. A. (2012). C-type lectin-like proteins from snake venoms. Toxicon, 60(4), 512–519.
  • Bawaskar, H. S., Bawaskar, P. H., & Bawaskar, P. H. (2017). Snake bite in India: A neglected disease of poverty. The Lancet, 390(10106), 1947–1948.
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56.
  • Bode, W. (2006). Structure and interaction modes of thrombin. Blood Cells, Molecules, and Diseases, 36(2), 122–130.
  • Brinkhous, K., Read, M., Fricke, W., & Wagner, R. (1983). Botrocetin (venom coagglutinin): Reaction with a broad spectrum of multimeric forms of factor VIII macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America, 80(5), 1463–1466.
  • Byoki, E. A., & Mirakabadi, A. Z. (2013). Partial Purification and characterization of anticoagulant factor from the snake (Echis carinatus) venom. Iranian Journal of Basic Medical Sciences, 16(11), 1139.
  • Casewell, N. R., Jackson, T. N., Laustsen, A. H., & Sunagar, K. (2020). Causes and consequences of snake venom variation. Trends in Pharmacological Sciences, 41(8), 570–581.
  • Chanda, A., & Mukherjee, A. K. (2020). Mass spectrometric analysis to unravel the venom proteome composition of Indian snakes: Opening new avenues in clinical research. Expert Review of Proteomics, 17(5), 411–423.
  • Chérifi, F., & Laraba-Djebari, F. (2021). Bioactive molecules derived from snake venoms with therapeutic potential for the treatment of thrombo-cardiovascular disorders associated with COVID-19. The Protein Journal, 40(6), 799–841.
  • Clemetson, K. J. (2010). Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon, 56(7), 1236–1246.
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519.
  • Das, N. C., Chakraborty, P., Bayry, J., & Mukherjee, S. (2022). In silico analyses on the comparative potential of therapeutic human monoclonal antibodies against newly emerged SARS-CoV-2 variants bearing mutant spike protein. Frontiers in Immunology, 12, 5576.
  • Das, N. C., Sen Gupta, P. S., Biswal, S., Patra, R., Rana, M. K., & Mukherjee, S. (2022). In-silico evidences on filarial cystatin as a putative ligand of human TLR4. Journal of Biomolecular Structure and Dynamics, 40(19), 8808–8824.
  • Del Gatto, A., Cobb, S. L., Zhang, J., & Zaccaro, L. (2021). Peptidomimetics: Synthetic tools for drug discovery and development. Frontiers in Chemistry, 9, 802120. https://doi.org/10.3389/fchem.2021.802120
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20, 1–6.
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics, 30(6), 846–851.
  • Doley, R., King, G. F., & Mukherjee, A. K. (2004). Differential hydrolysis of erythrocyte and mitochondrial membrane phospholipids by two phospholipase A2 isoenzymes (NK-PLA2-I and NK-PLA2-II) from the venom of the Indian monocled cobra Naja kaouthia. Archives of Biochemistry and Biophysics, 425(1), 1–13.
  • Doley, R., & Mukherjee, A. K. (2003). Purification and characterization of an anticoagulant phospholipase A2 from Indian monocled cobra (Naja kaouthia) venom. Toxicon, 41(1), 81–91.
  • Dutta, S., Chanda, A., Kalita, B., Islam, T., Patra, A., & Mukherjee, A. K. (2017). Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. Journal of Proteomics, 156, 29–39. https://doi.org/10.1016/j.jprot.2016.12.018
  • Dutta, S., Gogoi, D., & Mukherjee, A. K. (2015). Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: Inhibition of anticoagulant activity by low molecular weight heparin. Biochimie, 110, 93–106. https://doi.org/10.1016/j.biochi.2014.12.020
  • Dutta, S., Sinha, A., Dasgupta, S., & Mukherjee, A. K. (2019). Binding of a Naja naja venom acidic phospholipase A2 cognate complex to membrane-bound vimentin of rat L6 cells: Implications in cobra venom-induced cytotoxicity. Biochimica et Biophysica Acta. Biomembranes, 1861(5), 958–977. https://doi.org/10.1016/j.bbamem.2019.02.002
  • Faisal, T., Tan, K. Y., Sim, S. M., Quraishi, N., Tan, N. H., & Tan, C. H. (2018). Proteomics, functional characterization and antivenom neutralization of the venom of Pakistani Russell’s viper (Daboia russelii) from the wild. Journal of Proteomics, 183, 1–13. https://doi.org/10.1016/j.jprot.2018.05.003
  • Faure, G., Gowda, V. T., & Maroun, R. C. (2007). Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC Structural Biology, 7(1), 1–19.
  • Faure, G., & Saul, F. (2011). Structural and functional characterization of anticoagulant, FXa-binding Viperidae snake venom phospholipases A2. Acta Chimica Slovenica, 58(4), 671–677
  • Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20(1), 122–128.
  • Fox, J. W., & Serrano, S. M. (2008). Exploring snake venom proteomes: Multifaceted analyses for complex toxin mixtures. Proteomics, 8(4), 909–920.
  • Frangieh, J., Rima, M., Fajloun, Z., Henrion, D., Sabatier, J.-M., Legros, C., & Mattei, C. (2021). Snake venom components: Tools and cures to target cardiovascular diseases. Molecules, 26(8), 2223.
  • Gorai, S., Das, N. C., Gupta, P. S. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2022). Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infection, Genetics and Evolution, 98, 105237.
  • Gupta, P. S. S., Bhat, H. R., Biswal, S., & Rana, M. K. (2020). Computer-aided discovery of bis-indole derivatives as multi-target drugs against cancer and bacterial infections: DFT, docking, virtual screening, and molecular dynamics studies. Journal of Molecular Liquids, 320, 114375.
  • Herr, A. B. (2017). Charming the snake: Venom-derived peptides show surprising efficacy as glycoprotein VI-targeting antithrombotic agents. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(7), 1266–1268.
  • Kalita, B., Mackessy, S. P., & Mukherjee, A. K. (2018). Proteomic analysis reveals geographic variation in venom composition of Russell’s viper in the Indian subcontinent: Implications for clinical manifestations post-envenomation and antivenom treatment. Expert Review of Proteomics, 15(10), 837–849.
  • Kalita, B., & Mukherjee, A. K. (2019). Recent advances in snake venom proteomics research in India: A new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. Journal of Proteins and Proteomics, 10(2), 149–164.
  • Kalita, B., Patra, A., & Mukherjee, A. K. (2017). Unraveling the proteome composition and immuno-profiling of western India Russell’s viper venom for in-depth understanding of its pharmacological properties, clinical manifestations, and effective antivenom treatment. Journal of Proteome Research, 16(2), 583–598.
  • Kalita, B., Saviola, A. J., Samuel, S. P., & Mukherjee, A. K. (2021). State-of-the-art review—A review on snake venom-derived antithrombotics: Potential therapeutics for COVID-19-associated thrombosis? International Journal of Biological Macromolecules, 192, 1040–1057. https://doi.org/10.1016/j.ijbiomac.2021.10.015
  • Kalita, B., Singh, S., Patra, A., & Mukherjee, A. K. (2018). Quantitative proteomic analysis and antivenom study revealing that neurotoxic phospholipase A2 enzymes, the major toxin class of Russell’s viper venom from southern India, shows the least immuno-recognition and neutralization by commercial polyvalent antivenom. International Journal of Biological Macromolecules, 118, 375–385.
  • Kerns, R. T., Kini, R. M., Stefansson, S., & Evans, H. J. (1999). Targeting of venom phospholipases: The strongly anticoagulant phospholipase A2 from Naja nigricollis venom binds to coagulation factor Xa to inhibit the prothrombinase complex. Archives of Biochemistry and Biophysics, 369(1), 107–113.
  • King, G. (2013). Venoms to drugs: Translating venom peptides into therapeutics. Australian Biochemist, 44(3), 13–15.
  • Koh, D., Armugam, A., & Jeyaseelan, K. (2006). Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences, 63(24), 3030–3041.
  • Koh, C. Y., & Kini, R. M. (2012). From snake venom toxins to therapeutics—Cardiovascular examples. Toxicon, 59(4), 497–506.
  • Kumar, J., Basavarajappa, B. S., Arancio, O., Aranha, I., Gangadhara, N., Yajurvedi, H., & Gowda, T. V. (2008). Isolation and characterization of “Reprotoxin”, a novel protein complex from Daboia russelii snake venom. Biochimie, 90(10), 1545–1559.
  • Ladner, R. C., Sato, A. K., Gorzelany, J., & de Souza, M. (2004). Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discovery Today, 9(12), 525–529.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.
  • Lu, Q., Navdaev, A., Clemetson, J. M., & Clemetson, K. J. (2005). Snake venom C-type lectins interacting with platelet receptors. Structure–function relationships and effects on haemostasis. Toxicon, 45(8), 1089–1098.
  • McCleary, R. J., & Kini, R. M. (2013). Snake bites and hemostasis/thrombosis. Thrombosis Research, 132(6), 642–646.
  • McGregor, D. P. (2008). Discovering and improving novel peptide therapeutics. Current Opinion in Pharmacology, 8(5), 616–619.
  • Mizuno, H., Fujimoto, Z., Atoda, H., & Morita, T. (2001). Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proceedings of the National Academy of Sciences of the United States of America, 98(13), 7230–7234.
  • Mizuno, H., Fujimoto, Z., Koizumi, M., Kano, H., Atoda, H., & Morita, T. (1999). Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 Å: Implication of central loop swapping based on deletion in the linker region. Journal of Molecular Biology, 289(1), 103–112.
  • Mukherjee, A. K. (2010). Non-covalent interaction of phospholipase A2 (PLA2) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. Journal of Venom Research, 1, 37–42.
  • Mukherjee, A. K. (2021a). Indian Russell’s viper (Daboia russelii). In The ‘Big Four’ snakes of India (pp. 105–134). Springer.
  • Mukherjee, A. K. (2021b). Indian saw-scaled viper (Echis carinatus carinatus). In The ‘Big Four’ snakes of India (pp. 135–144). Springer.
  • Mukherjee, A. K., Dutta, S., Kalita, B., Jha, D. K., Deb, P., & Mackessy, S. P. (2016). Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell’s viper venom. Biochimie, 128, 138–147.
  • Mukherjee, A. K., Dutta, S., & Mackessy, S. P. (2014). A new C-type lectin (RVsnaclec) purified from venom of Daboia russelii russelii shows anticoagulant activity via inhibition of FXa and concentration-dependent differential response to platelets in a Ca2+-independent manner. Thrombosis Research, 134(5), 1150–1156.
  • Mukherjee, A. K., Kalita, B., Dutta, S., Patra, A., Maiti, C. R., & Punde, D. (2021). Snake envenomation: Therapy and challenges in India. In Stephen P. Mackessy (Ed.), Handbook of venoms and toxins of reptiles (pp. 581–592). CRC Press.
  • Navdaev, A., Dörmann, D., Clemetson, J. M., & Clemetson, K. J. (2001). Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMκ responsible for platelet agglutination in plasma and inducing signal transduction. Blood, 97(8), 2333–2341.
  • Osipov, A. V., Filkin, S. Y., Makarova, Y. V., Tsetlin, V. I., & Utkin, Y. N. (2010). A new type of thrombin inhibitor, noncytotoxic phospholipase A2, from the Naja haje cobra venom. Toxicon, 55(2–3), 186–194.
  • Patra, A., Banerjee, D., Dasgupta, S., & Mukherjee, A. K. (2021). The in vitro laboratory tests and mass spectrometry-assisted quality assessment of commercial polyvalent antivenom raised against the ‘Big Four’ venomous snakes of India. Toxicon, 192, 15–31. https://doi.org/10.1016/j.toxicon.2020.12.015
  • Patra, A., Kalita, B., Chanda, A., & Mukherjee, A. K. (2017). Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Scientific Reports, 7(1), 1–17.
  • Peng, M., Emig, F. A., Mao, A., Lu, W., Kirby, E. P., Niewiarowski, S., & Kowalska, M. A. (1995). Interaction of echicetin with a high affinity thrombin binding site on platelet glycoprotein GPIb. Thrombosis and Haemostasis, 74(3), 954–957.
  • Peng, M., Holt, J. C., & Niewiarowski, S. (1994). Isolation, characterization and amino acid sequence of echicetin β subunit, a specific inhibitor of von Willebrand factor and thrombin interaction with glycoprotein Ib. Biochemical and Biophysical Research Communications, 205(1), 68–72.
  • Peng, M., Lu, W., Beviglia, L., Niewiarowski, S., & Kirby, E. P. (1993). Echicetin: A snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib. Blood, 81(9), 2321–2328.
  • Pérez-Peinado, C., Defaus, S., & Andreu, D. J. T. (2020). Hitchhiking with Nature: Snake venom peptides to fight cancer and superbugs. Toxins, 12(4), 255.
  • Prijatelj, P., Charnay, M., Ivanovski, G., Jenko, Z., Pungerčar, J., Križaj, I., & Faure, G. (2006). The C-terminal and β-wing regions of ammodytoxin A, a neurotoxic phospholipase A2 from Vipera ammodytes ammodytes, are critical for binding to factor Xa and for anticoagulant effect. Biochimie, 88(1), 69–76.
  • Sato, A. K., Viswanathan, M., Kent, R. B., & Wood, C. R. (2006). Therapeutic peptides: Technological advances driving peptides into development. Current Opinion in Biotechnology, 17(6), 638–642.
  • Schulman, S., Beyth, R. J., Kearon, C., & Levine, M. N. (2008). Hemorrhagic complications of anticoagulant and thrombolytic treatment: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 133(6), 257S–2298.
  • Senji Laxme, R., Attarde, S., Khochare, S., Suranse, V., Martin, G., Casewell, N. R., Whitaker, R., & Sunagar, K. (2021). Biogeographical venom variation in the Indian spectacled cobra (Naja naja) underscores the pressing need for pan-India efficacious snakebite therapy. PLoS Neglected Tropical Diseases, 15(2), e0009150.
  • Senji Laxme, R., Khochare, S., de Souza, H. F., Ahuja, B., Suranse, V., Martin, G., Whitaker, R., & Sunagar, K. (2019). Beyond the ‘big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Neglected Tropical Diseases, 13(12), e0007899.
  • Sharma, M., Iyer, J. K., Shih, N., Majumder, M., Mattaparthi, V. S. K., Mukhopadhyay, R., & Doley, R. (2016). Daboxin p, a major phospholipase A2 enzyme from the Indian Daboia russelii russelii venom targets factor X and factor Xa for its anticoagulant activity. PLoS One, 11(4), e0153770.
  • Srikumar, P., Rohini, K., & Rajesh, P. K. (2014). Molecular dynamics simulations and principal component analysis on human laforin mutation W32G and W32G/K87A. The Protein Journal, 33(3), 289–295. https://doi.org/10.1007/s10930-014-9561-2
  • Thakur, R., Chattopadhyay, P., & Mukherjee, A. K. (2015). Biochemical and pharmacological characterization of a toxic fraction and its cytotoxin-like component isolated from Russell’s viper (Daboia russelii russelii) venom. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 168, 55–65. https://doi.org/10.1016/j.cbpc.2014.12.001
  • Warrell, D. A., Gutiérrez, J. M., Calvete, J. J., & Williams, D. (2013). New approaches and technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian Journal of Medical Research, 138(1), 38–59.
  • Zerbe, B. S., Hall, D. R., Vajda, S., Whitty, A., & Kozakov, D. (2012). Relationship between hot spot residues and ligand binding hot spots in protein–protein interfaces. Journal of Chemical Information and Modeling, 52(8), 2236–2244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.