133
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of SNPs from human IGFBP6 associated with gene expression: an in-silico study

, , &
Pages 13937-13949 | Received 20 Sep 2022, Accepted 28 Jan 2023, Published online: 22 Mar 2023

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38(Web Server), W529–W533. https://doi.org/10.1093/nar/gkq399
  • Bach, L. A., Headey, S. J., & Norton, R. S. (2005). IGF-binding proteins–the pieces are falling into place. Trends in Endocrinology and Metabolism: TEM, 16(5), 228–234. https://doi.org/10.1016/j.tem.2005.05.005
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., & Ben-Tal, N. (2004). ConSeq: The identification of functionally and structurally important residues in protein sequences. Bioinformatics (Oxford, England), 20(8), 1322–1324. https://doi.org/10.1093/bioinformatics/bth070
  • Bromberg, Y., Yachdav, G., & Rost, B. (2008). SNAP predicts effect of mutations on protein function. Bioinformatics (Oxford, England), 24(20), 2397–2398. https://doi.org/10.1093/bioinformatics/btn435
  • Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., Shaw, N., Lane, C. R., Lim, E. P., Kalyanaraman, N., Nemesh, J., Ziaugra, L., Friedland, L., Rolfe, A., Warrington, J., Lipshutz, R., Daley, G. Q., & Lander, E. S. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 22(3), 231–238. https://doi.org/10.1038/10290
  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
  • Cheng, J., Randall, A., & Baldi, P. (2005). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins: Structure, Function, and Bioinformatics, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part I: basic concepts and first analyses. British Journal of Cancer, 89(2), 232–238. https://doi.org/10.1038/sj.bjc.6601118
  • Clemmons, D. R. (2001). Use of mutagenesis to probe IGF-binding protein structure/function relationships. Endocrine Reviews, 22(6), 800–817. https://doi.org/10.1210/edrv.22.6.0449
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dakal, T. C., Kala, D., Dhiman, G., Yadav, V., Krokhotin, A., & Dokholyan, N. V. (2017). Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Scientific Reports, 7(1), 6525. https://doi.org/10.1038/s41598-017-06575-4
  • Deller, M. C., Kong, L., & Rupp, B. (2016). Protein stability: A crystallographer’s perspective. Acta Crystallographica Section F Structural Biology Communications, 72(2), 72–95. https://doi.org/10.1107/S2053230X15024619
  • Dooley, E. E. (2004). National center for biotechnology information. Environmental Health Perspectives, 112(12), A674. https://doi.org/10.1289/ehp.112-1277128
  • Ehrenborg, E., Zazzi, H., Lagercrantz, S., Granqvist, M., Hillerbrand, U., Allander, S. V., Larsson, C., & Luthman, H. (1999). Characterization and chromosomal localization of the human insulin-like growth factor-binding protein 6 gene. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 10(4), 376–380. https://doi.org/10.1007/s003359901005
  • Firth, S. M., & Baxter, R. C. (2002). Cellular actions of the insulin-like growth factor binding proteins. Endocrine Reviews, 23(6), 824–854. https://doi.org/10.1210/er.2001-0033
  • Fu, P., Yang, Z., & Bach, L. A. (2013). Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP6)-induced rhabdomyosarcoma cell migration. The Journal of Biological Chemistry, 288(41), 29890–29900. https://doi.org/10.1074/jbc.M113.510826
  • GeneCards Human Gene Database. ( 2022). IGFBP6 gene - GeneCards. Genecards.org. Retrieved 24 August 2022, from https://www.genecards.org/cgi-bin/carddisp.pl?gene=IGFBP6
  • Hossain, M. S., Roy, A. S., & Islam, M. S. (2020). In-silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions. Scientific Reports, 10(1), 14542. https://doi.org/10.1038/s41598-020-71457-1
  • IGFBP6 insulin like growth factor binding protein 6. [Homo sapiens (human)] - Gene - NCBI. (2022). Nih.gov. Retrieved 24 August 2022, from https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3489
  • Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37(Database), D412–D416. https://doi.org/10.1093/nar/gkn760
  • Kamaraj, B., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences. Journal of Molecular Modeling, 19(12), 5587–5599. https://doi.org/10.1007/s00894-013-2044-0
  • Kiefer, M. C., Ioh, R. S., Bauer, D. M., & Zapf, J. (1991). Molecular cloning of a new human insulin-like growth factor binding protein. Biochemical and Biophysical Research Communications, 176(1), 219–225. https://doi.org/10.1016/0006-291x(91)90912-q
  • Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4(7), 1073–1081. https://doi.org/10.1038/nprot.2009.86
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Li, G., Panday, S. K., & Alexov, E. (2021). SAAFEC-SEQ: A sequence-based method for predicting the effect of single point mutations on protein thermodynamic stability. International Journal of Molecular Sciences, 22(2), 606. https://doi.org/10.3390/ijms22020606
  • Miller, M. P., & Kumar, S. (2001). Understanding human disease mutations through the use of interspecific genetic variation. Human Molecular Genetics, 10(21), 2319–2328. https://doi.org/10.1093/hmg/10.21.2319
  • Mitsopoulos, C., Di Micco, P., Fernandez, E. V., Dolciami, D., Holt, E., Mica, I. L., Coker, E. A., Tym, J. E., Campbell, J., Che, K. H., Ozer, B., Kannas, C., Antolin, A. A., Workman, P., & Al-Lazikani, B. (2021). canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Research, 49(D1), D1074–D1082. https://doi.org/10.1093/nar/gkaa1059
  • Murphy, L. J. (1998). Insulin-like growth factor-binding proteins: functional diversity or redundancy? Journal of Molecular Endocrinology, 21(2), 97–107. https://doi.org/10.1677/jme.0.0210097
  • Nagy, Á., & Győrffy, B. (2021). muTarget: A platform linking gene expression changes and mutation status in solid tumors. International Journal of Cancer, 148(2), 502–511. https://doi.org/10.1002/ijc.33283
  • Neumann, G. M., & Bach, L. A. (1999). The N-terminal disulfide linkages of human insulin-like growth factor-binding protein-6 (hIGFBP6) and hIGFBP-1 are different as determined by mass spectrometry. The Journal of Biological Chemistry, 274(21), 14587–14594. https://doi.org/10.1074/jbc.274.21.14587
  • Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M., & Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9(1), 51. https://doi.org/10.1186/1472-6807-9-51
  • RCSB Protein Data Bank. (2022). 1RMJ. Rcsb.org. Retrieved 24 August 2022, from https://www.rcsb.org/structure/1RMJ
  • Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., & Zehfus, M. H. (1985). Hydrophobicity of amino acid residues in globular proteins. Science (New York, N.Y.), 229(4716), 834–838. https://doi.org/10.1126/science.4023714
  • Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308
  • Surhone, L. M., Tennoe, M. T., & Henssonow, S. F. (Eds.). (2010). Uniprot. Betascript Publishing.
  • Tang, H., & Thomas, P. D. (2016). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics, 32(14), 2230–2232. https://doi.org/10.1093/bioinformatics/btw222
  • Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), W98–W102. https://doi.org/10.1093/nar/gkx247
  • Tavtigian, S. V., Deffenbaugh, A. M., Yin, L., Judkins, T., Scholl, T., Samollow, P. B., de Silva, D., Zharkikh, A., & Thomas, A. (2006). Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. Journal of Medical Genetics, 43(4), 295–305. https://doi.org/10.1136/jmg.2005.033878
  • UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Yue, P., & Moult, J. (2006). Identification and analysis of deleterious human SNPs. Journal of Molecular Biology, 356(5), 1263–1274. https://doi.org/10.1016/j.jmb.2005.12.025
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/nar/gki524

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.