335
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Hydroxamic acid derivatives as selective HDAC3 inhibitors: computer-aided drug design strategies

, , , ORCID Icon, &
Pages 362-383 | Received 01 Sep 2022, Accepted 13 Mar 2023, Published online: 30 Mar 2023

References

  • Adhikari, N., Amin, S. A., Trivedi, P., Jha, T., & Ghosh, B. (2018). HDAC3 is a potential validated target for cancer: An overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. European Journal of Medicinal Chemistry, 157, 1127–1142. https://doi.org/10.1016/j.ejmech.2018.08.081
  • Bartling, B., Hofmann, H. S., Boettger, T., Hansen, G., Burdach, S., Silber, R. E., & Simm, A. (2005). Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer (Amsterdam, Netherlands), 49(2), 145–154. https://doi.org/10.1016/j.lungcan.2005.02.006
  • Berendsen, H. J., Van der Spoel, D., & Van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bieliauskas, A. V., & Pflum, M. K. (2008). Isoform-selective histone deacetylase inhibitors. Chemical Society Reviews, 37(7), 1402–1413. https://doi.org/10.1039/b703830p
  • Cao, F., Zwinderman, M. R. H., & Dekker, F. J. (2018). The process and strategy for developing selective histone deacetylase 3 inhibitors. Molecules, 23(3), 551. https://doi.org/10.3390/molecules23030551
  • Chao, S. W., Chen, L. C., Yu, C. C., Liu, C. Y., Lin, T. E., Guh, J. H., Wang, C., Y., Chen, C. Y., Hsu, K. C., & Huang, W. J. (2018). Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities. European Journal of Medicinal Chemistry, 143, 792–805. https://doi.org/10.1016/j.ejmech.2017.11.092
  • Chen, J., Li, D., Li, W., Yin, J., Zhang, Y., Yuan, Z., Gao, C., Liu, F., & Jiang, Y. (2018). Design, synthesis and anticancer evaluation of acridine hydroxamic acid derivatives as dual Topo and HDAC inhibitors. Bioorganic and Medicinal Chemistry, 26(14), 3958–3966.
  • ConfGen, Schrödinger. (2021). LLC.
  • Cui, H., Hong, Q., Wei, R., Li, H., Wan, C., Chen, X., Zhao, S., Bu, H., Zhang, B., Yang, D., Lu, T., Chen, Y., & Zhu, Y. (2022). Design and synthesis of HDAC inhibitors to enhance the therapeutic effect of diffuse large B-cell lymphoma by improving metabolic stability and pharmacokinetic characteristics. European Journal of Medicinal Chemistry, 229, 114049.
  • Dinakar, S., Gurubarath, M., & Dhananjayan, K. (2022). Prediction of binding affinity of 1, 2-diphenyline ketone analogues at adenosine triphosphate binding site of glycogen synthase kinase-3β: A molecular docking and dynamic simulation study. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2022.2074143
  • Discovery Studio. (2014). Software, version 4.1. Accelrys Software Inc.
  • Desmond Molecular Dynamics System. (2018). D E Shaw research. Maestro-Desmond Interoperability Tools; Schrödinger.
  • Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18(7), 1414. https://doi.org/10.3390/ijms18071414
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196.
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759.
  • Glide (v3.4), Schrödinger. (2012). LLC.
  • Guo, Z., Mohanty, U., Noehre, J., Sawyer, T. K., Sherman, W., & Krilov, G. (2010). Probing the α‐helical structural stability of stapled p53 peptides: Molecular dynamics simulations and analysis. Chemical Biology and Drug Design, 75(4), 348–359. https://doi.org/10.1111/j.1747-0285.2010.00951
  • Gupta, M. K., & Misra, K. (2014). Atom-based 3D-QSAR, molecular docking and molecular dynamics simulation assessment of inhibitors for thyroid hormone receptor alpha and beta. Journal of Molecular Modeling, 20(6), 2286. https://doi.org/10.1007/s00894-014-2286-5
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Ibrahim, T. S., Sheha, T. A., Abo-Dya, N. E., AlAwadh, M. A., Alhakamy, N. A., Abdel-Samii, Z. K., Panda, S. S., Abuo-Rahma, G. E. A., & Mohamed, M. F. A. (2020). Design, synthesis and anticancer activity of novel valproic acid conjugates with improved histone deacetylase (HDAC) inhibitory activity. Bioorganic Chemistry, 99, 103797.
  • Ivanova, L., Tammiku-Taul, J., Garcia-Sosa, A. T., Sidorova, Y., Saarma, M., & Karelson, M. (2018). Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRalpha1 and small-molecule ligands. ACS Omega, 3(9), 11407–11414. https://doi.org/10.1021/acsomega.8b01524
  • Kandasamy, S., Subramani, P., Srinivasan, K., Marshal Jayaraj, J., Prasanth, G., Muthusamy, K., Rajakannan, V., & Vilwanathan, R. (2020). Design and synthesis of imidazole based zinc binding groups as novel small molecule inhibitors targeting Histone deacetylase enzymes in lung cancer. Journal of Molecular Structure, 1214, 128177.
  • Khabele, D., Son, D. S., Parl, A. K., Goldberg, G. L., Augenlicht, L. H., Mariadason, J. M., & Rice, V. M. (2007). Drug-induced inactivation or gene silencing of class I histone deacetylases suppresses ovarian cancer cell growth: Implications for therapy. Cancer Biology & Therapy, 6(5), 795–801. https://doi.org/10.4161/cbt.6.5.4007
  • Kukic, P., & Nielsen, J. E. (2010). Electrostatics in proteins and protein-ligand complexes. Future Medicinal Chemistry, 2(4), 647–666. https://doi.org/10.4155/fmc.10.6
  • La, M. T., Jeong, B. H., & Kim, H. K. (2021). Design and Synthesis of Novel N‐(2‐aminophenyl) benzamide derivatives as histone deacetylase inhibitors and their antitumor activity study. Bulletin of the Korean Chemical Society, 42(5), 740–743.
  • Lee, H. Z., Kwitkowski, V. E., Del Valle, P. L., Ricci, M. S., Saber, H., Habtemariam, B. A., Bullock, j., Bloomquist, E., Li Shen, Y., Chen, X. H., Brown, J., Mehrotra, N., Dorff, S., Charlab, R., Kane, R. C., Kaminskas, E., Justice, R., Farrell, A. T., & Pazdur, R. (2015). FDA approval: Belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clinical Cancer Research, 21(12), 2666–2670. https://doi.org/10.1158/1078-0432.CCR-14-3119
  • LigPrep, version 2.5, Schrodinger. (2012). LLC.
  • Lill, M. (2013). Virtual screening in drug design. Methods in Molecular Biology (Clifton, N.J.), 993, 1–12. https://doi.org/10.1007/978-1-62703-342-8_1
  • Ling, Y., Guo, J., Yang, Q., Zhu, P., Miao, J., Gao, W., Peng, Y., Yang, J., Xu, K., Xiong, B., Liu, G., Tao, J., Luo, L., Zhu, Q., & Zhang, Y. (2018). Development of novel beta-carboline-based hydroxamate derivatives as HDAC inhibitors with antiproliferative and antimetastatic activities in human cancer cells. European Journal of Medicinal Chemistry, 144, 398–409. https://doi.org/10.1016/j.ejmech.2017.12.061
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., & Pazdur, R. (2007). FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. The Oncologist, 12(10), 1247–1252. https://doi.org/10.1634/theoncologist.12-10-1247
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. Journal of Chemical Physics. 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Mekala, J. R., Ramalingam, P. S., Mathavan, S., Yamajala, R. B., Moparthi, N. R., Kurappalli, R. K., & Manyam, R. R. (2022). Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma cancer cells via HDAC/microRNA regulation. Chemico-Biological Interactions, 357, 109876. https://doi.org/10.1016/j.cbi.2022.109876
  • Minami, J., Suzuki, R., Mazitschek, R., Gorgun, G., Ghosh, B., Cirstea, D., Hu, Y., Mimura, N., Ohguchi, H., Cottini, F., Jakubikova, J., Munshi, N. C., Haggarty, S. J., Richardson, P. G., Hideshima, T., & Anderson, K. C. (2014). Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia, 28(3), 680–689. https://doi.org/10.1038/leu.2013.231
  • Mishra, S. S., Ranjan, S., Sharma, C. S., Singh, H. P., Kalra, S., & Kumar, N. (2021). Computational investigation of potential inhibitors of novel coronavirus 2019 through structure-based virtual screening, molecular dynamics and density functional theory studies. Journal of Biomolecular Structure & Dynamics, 39(12), 4449–4461. https://doi.org/10.1080/07391102.2020.1791957
  • Mulakala, C., & Viswanadhan, V. N. (2013). Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? Journal of Molecular Graphics & Modelling, 46, 41–51. https://doi.org/10.1016/j.jmgm.2013.09.005
  • Muller, B. M., Jana, L., Kasajima, A., Lehmann, A., Prinzler, J., Budczies, J., Winzer, K. J., Dietel, M., Weichert, W., & Denkert, C. (2013). Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer, 13, 215. https://doi.org/10.1186/1471-2407-13-215
  • Neelarapu, R., Holzle, D. L., Velaparthi, S., Bai, H., Brunsteiner, M., Blond, S. Y., & Petukhov, P. A. (2011). Design, synthesis, docking, and biological evaluation of novel diazide-containing isoxazole- and pyrazole-based histone deacetylase probes. Journal of Medicinal Chemistry, 54(13), 4350–4364. https://doi.org/10.1021/jm2001025
  • Negmeldin, A. T., Knoff, J. R., & Pflum, M. K. H. (2018). The structural requirements of histone deacetylase inhibitors: C4-modified SAHA analogs display dual HDAC6/HDAC8 selectivity. European Journal of Medicinal Chemistry, 143, 1790–1806. https://doi.org/10.1016/j.ejmech.2017.10.076
  • Nguyen, H. N., & Le Thi, T. H. (2018). In silico screening, design and synthesis of novel inhibitors against histone deacetylase (HDAC). VNU Journal of Science: Medical and Pharmaceutical Sciences, 34(1), 20–28. https://doi.org/10.25073/2588-1132/vnumps.4100
  • Pal, S., Kumar, V., Kundu, B., Bhattacharya, D., Preethy, N., Reddy, M. P., & Talukdar, A. (2019). Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Computational and Structural Biotechnology Journal, 17, 291–310. https://doi.org/10.1016/j.csbj.2019.02.006
  • Patel, P., Patel, V. K., Singh, A., Jawaid, T., Kamal, M., & Rajak, H. (2019). Identification of hydroxamic acid based selective HDAC1 Inhibitors: Computer aided drug design studies. Current Computer-Aided Drug Design, 15(2), 145–166. https://doi.org/10.2174/1573409914666180502113135
  • Patel, P., & Rajak, H. (2018). Development of hydroxamic acid derivatives as anticancer agent with the application of 3D-QSAR, docking and molecular dynamics simulations studies. Medicinal Chemistry Research, 27(9), 2100–2115. https://doi.org/10.1007/s00044-018-2219-4
  • Patel, P., Singh, A., Patel, V. K., Jain, D. K., Veerasamy, R., & Rajak, H. (2016). Pharmacophore based 3D-QSAR, virtual screening and docking studies on novel series of HDAC inhibitors with thiophen linker as anticancer agents. Combinatorial Chemistry & High Throughput Screening, 19(9), 735–751. https://doi.org/10.2174/1386207319666160801154415
  • Peng, X., Chen, J., Li, L., Sun, Z., Liu, J., Ren, Y., Huang, J., & Chen, J. (2021). Efficient synthesis and bioevaluation of novel dual tubulin/histone deacetylase 3 inhibitors as potential anticancer agents. Journal of Medicinal Chemistry, 64(12), 8447–8473.
  • QikProp, Schrödinger. (2021). LLC.
  • Raedler, L. A. (2016). Farydak (Panobinostat): First HDAC inhibitor approved for patients with relapsed multiple myeloma. American Health & Drug Benefits, 9(Spec Feature), 84–87.
  • Rafi, M. O., Bhattacharje, G., Al-Khafaji, K., Taskin-Tok, T., Alfasane, M. A., Das, A. K., Parvez, M. A. K., & Rahman, M. S. (2022). Combination of QSAR, molecular docking, molecular dynamic simulation and MM-PBSA: Analogues of lopinavir and favipiravir as potential drug candidates against COVID-19. Journal of Biomolecular Structure & Dynamics, 40(8), 3711–3730. https://doi.org/10.1080/07391102.2020.1850355
  • Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews. Computational Molecular Science, 6(2), 147–172. https://doi.org/10.1002/wcms.1240
  • Rajak, H., Singh, A., Raghuwanshi, K., Kumar, R., Dewangan, P. K., Veerasamy, R., Sharma, P. C., Dixit, A., & Mishra, P. (2014). A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity. Current Medicinal Chemistry, 21(23), 2642–2664. https://doi.org/10.2174/09298673113209990191
  • Reid, M. A., Dai, Z., & Locasale, J. W. (2017). The impact of cellular metabolism on chromatin dynamics and epigenetics. Nature Cell Biology, 19(11), 1298–1306. https://doi.org/10.1038/ncb3629
  • Schrödinger. (2012). Phase, version 3.4. Schrodinger, LLC.
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Singh, A., Patel, P., Patel, V. K., Jain, D. K., Kamal, M., Rajak., & H., Jageshwar. (2018). The safety, efficacy and therapeutic potential of histone deacetylase inhibitors with special reference to panobinostat in gastrointestinal tumors: A review of preclinical and clinical studies. Current Cancer Drug Targets, 18(8), 720–736. https://doi.org/10.2174/1568009617666170630124643
  • Singh, R., Gautam, A., Chandel, S., Sharma, V., Ghosh, A., Dey, D., Roy, S., Ravichandiran, V., & Ghosh, D. (2021). Computational screening of FDA approved drugs of fungal origin that may interfere with SARS-CoV-2 spike protein activation, viral RNA replication, and post‐translational modification: A multiple target approach. In Silico Pharmacology, 9, 1–16.
  • Sirous, H., Campiani, G., Calderone, V., & Brogi, S. (2021). Discovery of novel hit compounds as potential HDAC1 inhibitors: The case of ligand-and structure-based virtual screening. Computers in Biology and Medicine, 137, 104808. https://doi.org/10.1016/j.compbiomed.2021.104808
  • Song, J., Noh, J. H., Lee, J. H., Eun, J. W., Ahn, Y. M., Kim, S. Y., Lee, S. H., Park, W. S., Yoo, N. J., Lee, J. Y., & Nam, S. W. (2005). Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 113(4), 264–268. https://doi.org/10.1111/j.1600-0463.2005.apm_04.x
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics: PCCP, 16(40), 22035–22045. https://doi.org/10.1039/c4cp03179b
  • Tripathi, M. K., Ahmad, S., Tyagi, R., Dahiya, V., & Yadav, M. K. (2022). Fundamentals of molecular modeling in drug design. In M. Rudrapal and C. Egbuna (Eds.), Computer Aided Drug Design (CADD): From ligand-based methods to structure-based approaches. Drug Discovery Updates (pp. 125–155). Elsevier. https://doi.org/10.1016/B978-0-323-90608-1.00001-0
  • Ujiantari, N. S. O., Ham, S., Nagiri, C., Shihoya, W., Nureki, O., Hutchinson, D. S., & Schuster, D. (2022). Pharmacophore‐guided virtual screening to identify new β3‐adrenergic receptor agonists. Molecular informatics, 41(7), 2100223. https://doi.org/10.1002/minf.202100223
  • Watson, P. J., Fairall, L., Santos, G. M., & Schwabe, J. W. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 481(7381), 335–340. https://doi.org/10.1038/nature10728
  • Watts, K. S., Dalal, P., Murphy, R. B., Sherman, W., Friesner, R. A., & Shelley, J. C. (2010). ConfGen: A conformational search method for efficient generation of bioactive conformers. Journal of Chemical Information and Modeling, 50(4), 534–546. https://doi.org/10.1021/ci100015j
  • Xia, J., Hu, H., Xue, W., Wang, X. S., & Wu, S. (2018). The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 525–535.
  • Yan, Y., An, J., Yang, Y., Wu, D., Bai, Y., Cao, W., Ma, L., Chen, J., Yu, Z., He, Y., Jin, X., Pan, Y., Ma, T., Wang, S., Hou, X., Weroha, S. J., Karnes, R. J., Zhang, J., Westerndorf, J. J., … Huang, H. (2018). Dual inhibition of AKT-mTOR and AR signaling by targeting HDAC3 in PTEN- or SPOP-mutated prostate cancer. EMBO Molecular Medicine, 10(4), e8478. https://doi.org/10.15252/emmm.201708478
  • Yang, J., Cheng, G., Xu, Q., Luan, S., Wang, S., Liu, D., & Zhao, L. (2018). Design, synthesis and biological evaluation of novel hydroxamic acid based histone deacetylase 6 selective inhibitors bearing phenylpyrazol scaffold as surface recognition motif. Bioorganic and Medicinal Chemistry, 26(8), 1418–1425. https://doi.org/10.1016/j.bmc.2017.08.029
  • Yang, S. Y. (2010). Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discovery Today, 15(11–12), 444–450. https://doi.org/10.1016/j.drudis.2010.03.013
  • Yang, W., Li, L., Ji, X., Wu, X., Su, M., Sheng, L., Zang, Y., Li, J., & Liu, H. (2014). Design, synthesis and biological evaluation of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorganic & Medicinal Chemistry, 22(21), 6146–6155. https://doi.org/10.1016/j.bmc.2014.08.030
  • Yang, X., Ferguson, A. T., Nass, S. J., Phillips, D. L., Butash, K. A., Wang, S. M., Herman, J. G., & Davidson, N. E. (2000). Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Research, 60(24), 6890–6894.
  • Zhang, X., Bao, B., Yu, X., Tong, L., Luo, Y., Huang, Q., Su, M., Sheng, L., Li, J., Zhu, H., Yang, B., Zhang, X., Chen, Y., & Lu, W. (2013). The discovery and optimization of novel dual inhibitors of topoisomerase II and histone deacetylase. Bioorganic & Medicinal Chemistry, 21(22), 6981–6995. https://doi.org/10.1016/j.bmc.2013.09.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.