275
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential inhibitor against CTX-M-3 and CTX-M-15 proteins: an in silico and in vitro study

, , , , & ORCID Icon
Pages 177-193 | Received 19 Jan 2023, Accepted 10 Mar 2023, Published online: 30 Mar 2023

References

  • Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics : Potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258–213. https://doi.org/10.3390/metabo9110258
  • Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195–201. https://doi.org/10.1093/bioinformatics/bti770
  • Baell, J. B. (2016). Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of Natural Products, 79(3), 616–628. https://doi.org/10.1021/acs.jnatprod.5b00947
  • Baell, J., & Walters, M. A. (2014). Chemical con artists foil drug discovery. Nature, 513(7519), 481–483. https://doi.org/10.1038/513481a
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bevan, E. R., Jones, A. M., & Hawkey, P. M. (2017). Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. The Journal of Antimicrobial Chemotherapy, 72(8), 2145–2155. https://doi.org/10.1093/jac/dkx146
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 1–9. https://doi.org/10.1186/1471-2105-10-421
  • Cantón, R., González-Alba, J. M., & Galán, J. C. (2012)). CTX-M enzymes: Origin and diffusion. Frontiers in Microbiology, 3, 1-21. https://doi.org/10.3389/fmicb.2012.00110
  • Castanheira, M., Simner, P. J., & Bradford, P. A. (2021). Extended-spectrum β -lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 3(3), 1-21. https://doi.org/10.1093/jacamr/dlab092
  • Chen, J., Zeng, Q., Wang, W., Sun, H., & Hu, G. (2022). Decoding the identification mechanism of an SAM-III riboswitch on ligands through multiple independent Gaussian-accelerated molecular dynamics simulations. Journal of Chemical Information and Modeling, 62(23), 6118–6132. https://doi.org/10.1021/acs.jcim.2c00961
  • Chen, J., Zhang, S., Wang, W., Pang, L., Zhang, Q., & Liu, X. (2021). Mutation-induced impacts on the switch transformations of the GDP-and GTP-bound K-ras: Insights from multiple replica Gaussian accelerated molecular dynamics and free energy analysis. Journal of Chemical Information and Modeling, 61(4), 1954–1969. https://doi.org/10.1021/acs.jcim.0c01470
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography, 66(1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Dehury, B., Patra, M. C., Maharana, J., Sahu, J., Sen, P., Modi, M. K., Choudhury, M. D., & Barooah, M. (2014). Structure-based computational study of two disease resistance gene homologues (Hm1 and Hm2) in maize (Zea mays L.) with implications in plant-pathogen. PLoS One, 9(5), e97852. https://doi.org/10.1371/journal.pone.0097852
  • Dhillon, R. H. P., & Clark, J. (2012). ESBLs: A clear and present danger? Critical Care Research and Practice, 2012, 625170. https://doi.org/10.1155/2012/625170
  • Doak, B. C., Giordanetto, F., & Kihlberg, J. (2014). Review oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chemistry & Biology, 1115–1142. https://doi.org/10.1016/j.chembiol.2014.08.013
  • Doi, Y., Iovleva, A., & Bonomo, R. A. (2017). The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. Journal of Travel Medicine, 24(suppl_1), S44–S51. https://doi.org/10.1093/jtm/taw102
  • Dutour, C., Bonnet, R., Marchandin, H., Boyer, M., Chanal, C., Sirot, D., & Sirot, J. (2002). CTX-M-1, CTX-M-3, and CTX-M-14 -lactamases from enterobacteriaceae isolated in France. Society, 46(2), 534–537. https://doi.org/10.1128/AAC.46.2.534
  • EClinicalMedicine. (2021). Antimicrobial resistance: A top ten global public health threat. EClinicalMedicine, 41, 101221. https://doi.org/10.1016/j.eclinm.2021.101221
  • Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(1), 1–11. https://doi.org/10.1186/1758-2946-1-8
  • Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen Der Physik, 369(3), 253–287. https://doi.org/10.1002/andp.19213690304
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, PMC.S14459–64. https://doi.org/10.4137/PMC.S14459
  • Ferreira De Freitas, R., & Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981. https://doi.org/10.1039/C7MD00381A
  • Govindaswamy, A., Bajpai, V., Khurana, S., Batra, P., Mathur, P., & Malhotra, R. (2019). Prevalence and characterization of beta‑lactamase‑producing Escherichia coli isolates from a tertiary care hospital in India. Journal of Laboratory Physicians, 11(3), 123–127. https://doi.org/10.4103/jgid.jgid_68_18
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/C8MD00472B
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(17), 1–17. https://doi.org/10.1016/j.aim.2014.05.019
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Huang, J., & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Hutchings, M., Truman, A., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51(1), 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  • K., Vanommeslaeghe, E., Hatcher, C., Acharya, S., Kundu, S., Zhong, J., Shim, E. D. O., Guvench, P., Lopes, I., & Vorobyov, A. D. M. J. (2012). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields K. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc
  • Kadri, S. S. (2020). Key takeaways from the U.S. CDC’s 2019 antibiotic resistance threats report for frontline providers. Critical Care Medicine, 2, 939–945. https://doi.org/10.1097/CCM.0000000000004371
  • Kar, B., Sharma, M., Peter, A., Chetia, P., Neog, B., Borah, A., Pati, S., & Bhattacharya, D. (2021). Prevalence and molecular characterization of β-lactamase producers and fluoroquinolone resistant clinical isolates from North East India. Journal of Infection and Public Health, 14(5), 628–637. https://doi.org/10.1016/j.jiph.2021.02.007
  • Khameneh, B., Iranshahy, M., Soheili, V., Sedigheh, B., & Bazzaz, F. (2019). Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lahiri, S. D., Mangani, S., Durand-Reville, T., Benvenuti, M., De Luca, F., Sanyal, G., & Docquier, J. D. (2013). Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: Avibactam in complex with CTX-M-15 and pseudomonas aeruginosa AmpC β-lactamases. Antimicrobial Agents and Chemotherapy, 57(6), 2496–2505. https://doi.org/10.1128/AAC.02247-12
  • Lai, C.-C., Chen, S.-Y., Ko, W.-C., & Hsueh, P.-R. (2021). Combating antimicrobial resistance during the COVID-19 pandemic. International Journal of Antimicrobial Agents, 57(4), 106324–106398. https://doi.org/10.1016/j.ijantimicag.2021.106324
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Liu, S., Zhou, Y., Niu, X., Wang, T., Li, J., Liu, Z., Wang, J., Tang, S., Wang, Y., & Deng, X. (2018). Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discovery, 4(28). https://doi.org/10.1038/s41420-018-0029-6
  • Mendonça, N., Leitão, J., Manageiro, V., Ferreira, E., & Caniça, M. (2007). Spread of extended-spectrum β-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrobial Agents and Chemotherapy, 51(6), 1946–1955. https://doi.org/10.1128/AAC.01412-06
  • Mengs, U., Torsten Pohl, R., & Mitchell, T. (2012). Legalon® SIL: The antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Current Pharmaceutical Biotechnology, 13(10), 1964–1970. https://doi.org/10.2174/138920112802273353
  • Mogana, R., Adhikari, A., Tzar, M. N., Ramliza, R., & Wiart, C. (2020). Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary and Alternative Medicine, 20(55), 1–11.
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R., P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian Medicinal Plants. Phytochemistry and Therapeutics. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-22631-z
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nadimpalli, M. L., Chan, C. W., & Doron, S. (2021). Antibiotic resistance: A call to action to prevent the next epidemic of inequality. Nature Medicine, 27(2), 186–187. https://doi.org/10.1038/s41591-021-01229-5
  • Nichols, D. A., Jaishankar, P., Larson, W., Smith, E., Liu, G., Beyrouthy, R., Bonnet, R., Renslo, A. R., & Chen, Y. (2012). Structure-based design of potent and ligand-efficient inhibitors of CTX-M class A β-lactamase. Journal of Medicinal Chemistry, 55(5), 2163–2172. https://doi.org/10.1021/jm2014138
  • Ohene-Agyei, T., Mowla, R., Rahman, T., & Venter, H. (2014). Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen, 3(6), 885–896. https://doi.org/10.1002/mbo3.212
  • Pandey, N., & Cascella, M. (2022). Beta lactam antibiotics. In StatPearls. StatPearls Publishing. PMID 31424895
  • Peirano, G., & Pitout, J. D. D. (2019). Extended-spectrum β-lactamase-producing enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs, 79(14), 1529–1541. https://doi.org/10.1007/s40265-019-01180-3
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Rahman, M., & Khan, K. A. (2019). In silico based unraveling of New Delhi metallo- β - lactamase (NDM-1) inhibitors from natural compounds: A molecular docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 38(7), 1–11. https://doi.org/10.1080/07391102.2019.1627248
  • Ramdani-Bouguessa, N., Mendonça, N., Leitão, J., Ferreira, E., Tazir, M., & Caniça, M. (2006). CTX-M-3 and CTX-M-15 extended-spectrum β-lactamases in isolates of Escherichia coli from a hospital in Algiers. Journal of Clinical Microbiology, 44(12), 4584–4586. https://doi.org/10.1128/JCM.01445-06
  • Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2012). HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2), 173–175. https://doi.org/10.1038/nmeth.1818
  • Rhodes, G. (2006). Crystallography made crystal clear (3rd ed.) In Academic Press. https://doi.org/10.1016/b978-012587073-3/50011-8
  • Rossolini, G. M., D’Andrea, M. M., & Mugnaioli, C. (2008). The spread of CTX-M-type extended-spectrum β-lactamases. Clinical Microbiology and Infection, 14(SUPPL. 1), 33–41. https://doi.org/10.1111/j.1469-0691.2007.01867.x
  • Song, J.-H., Kim, K.-J., & Lee, B.-Y. (2016). Silibinin suppresses mediators of inflammation through the inhibition of TLR4-TAK1 pathway in LPS-induced. Journal of Food and Nutrition Research, 4(8), 515–521. https://doi.org/10.12691/jfnr-4-8-5
  • Toudji, G. A., Thiombiano, E., Karou, S. D., Anani, K., Adjrah, Y., Gbekley, H. E., Kiendrebeogo, M., Ameyapoh, Y., & Simpore, J. (2017). Antibacterial and anti-inflammatory activities of crude extracts of three Togolese medicinal plants against ESBL Klebsiella pneumoniae strains. African Journal of Traditional, Complementary and Alternative Medicines, 15(1), 42–58. https://doi.org/10.21010/ajtcam.vi15.1.5
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2). https://doi.org/10.1002/jcc.21334
  • University of Oxford. (2022). An estimated 1.2 million people died in 2019 from antibiotic-resistant bacterial infections. University of Oxford, pp. 20–22.
  • Ur Rahman, S., Ali, T., Ali, I., Khan, N. A., Han, B., & Gao, J. (2018). The growing genetic and functional diversity of extended spectrum beta-lactamases. BioMed Research International, 2018, 9519718. https://doi.org/10.1155/2018/9519718
  • US Department of Health and Human Services, & CDC. (2019). Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, pp. 1–113. https://www.cdc.gov/drugresistance/biggest_threats.html
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, X., Yang, Y., Gao, Y., & Niu, X. (2020). Discovery of the novel inhibitor against New Delhi Metallo- β -lactamase based on virtual screening and molecular modelling. International Journal of Molecular Sciences, 21(10), 3567.
  • WHO. (2019). WHO Global report on traditional and complementary medicine 2019. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/312342/9789241515436-eng.pdf?ua=1
  • Zeynudin, A., Pritsch, M., Schubert, S., Messerer, M., Liegl, G., Hoelscher, M., Belachew, T., & Wieser, A. (2018). Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infectious Diseases, 18(1), 1–10. https://doi.org/10.1186/s12879-018-3436-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.