102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison and monitoring of antibody response in convalescent and healthy vaccinated individuals against RBD and PCS of SARS-CoV-2 spike protein

, , &
Pages 14224-14231 | Received 20 Oct 2022, Accepted 06 Feb 2023, Published online: 24 Mar 2023

References

  • Almuqrin, A., Davidson, A. D., Williamson, M. K., Lewis, P. A., Heesom, K. J., Morris, S., Gilbert, S. C., & Matthews, D. A. (2021). SARS-CoV-2 vaccine ChAdOx1 nCoV-19 infection of human cell lines reveals low levels of viral backbone gene transcription alongside very high levels of SARS-CoV-2 S glycoprotein gene transcription. Genome Medicine, 13(1), 43. https://doi.org/10.1186/s13073-021-00859-1
  • Altawalah, H. (2021). Antibody responses to natural SARS-CoV-2 infection or after COVID-19 vaccination. Vaccines, 9(8), 910. https://doi.org/10.3390/vaccines9080910
  • Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., Qu, Y., Li, F., Lv, Q., Wang, W., Xue, J., Gong, S., Liu, M., Wang, G., Wang, S., … Qin, C. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 583(7818), 830–833. https://doi.org/10.1038/s41586-020-2312-y
  • Barros-Martins, J., Hammerschmidt, S. I., Cossmann, A., Odak, I., Stankov, M. V., Morillas Ramos, G., Dopfer-Jablonka, A., Heidemann, A., Ritter, C., Friedrichsen, M., Schultze-Florey, C., Ravens, I., Willenzon, S., Bubke, A., Ristenpart, J., Janssen, A., Ssebyatika, G., Bernhardt, G., Münch, J., … Behrens, G. M. N. (2021). Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nature Medicine, 27(9), 1525–1529. https://doi.org/10.1038/s41591-021-01449-9
  • Boechat, J. L., Chora, I., Morais, A., & Delgado, L. (2021). The immune response to SARS-CoV-2 and COVID-19 immunopathology–current perspectives. Pulmonology, 27(5), 423–437. https://doi.org/10.1016/j.pulmoe.2021.03.008
  • Chung, H., Noh, J. Y., Koo, B.-S., Hong, J. J., & Kim, H. K. (2022). SARS-CoV-2 mutations acquired during serial passage in human cell lines are consistent with several of those found in recent natural SARS-CoV-2 variants. Computational and Structural Biotechnology Journal. 20, 1925–1934. https://doi.org/10.1016/j.csbj.2022.04.022
  • Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research, 176, 104742. https://doi.org/10.1016/j.antiviral.2020.104742
  • Dwyer, C. J., Cloud, C. A., Wang, C., Heidt, P., Chakraborty, P., Duke, T. F., McGue, S., Jeffcoat, B., Dunne, J., Johnson, L., Choi, S., Nahhas, G. J., Gandy, A. S., Babic, N., Nolte, F. S., Howe, P., Ogretmen, B., Gangaraju, V. K., Tomlinson, S., … Mehrotra, S. (2021). Comparative analysis of antibodies to SARS-CoV-2 between asymptomatic and convalescent patients. Iscience, 24(6), 102489. https://doi.org/10.1016/j.isci.2021.102489
  • Eyre, D. W., Lumley, S. F., Wei, J., Cox, S., James, T., Justice, A., Jesuthasan, G., O'Donnell, D., Howarth, A., Hatch, S. B., Marsden, B. D., Jones, E. Y., Stuart, D. I., Ebner, D., Hoosdally, S., Crook, D. W., Peto, T. E., Walker, T. M., Stoesser, N. E., … Jeffery, K. (2021). Quantitative SARS-CoV-2 anti-spike responses to Pfizer–BioNTech and Oxford–AstraZeneca vaccines by previous infection status. Clin Microbiol Infect, 27(10), 1516.e7–1516.e14. https://doi.org/10.1016/j.cmi.2021.05.041
  • Feng, C., Shi, J., Fan, Q., Wang, Y., Huang, H., Chen, F., Tang, G., Li, Y., Li, P., Li, J., Cui, J., Guo, L., Chen, S., Jiang, M., Feng, L., Chen, L., Lei, C., Ke, C., Deng, X., … Li, F. (2021). Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery. Nature Communications, 12(1), 4984. https://doi.org/10.1038/s41467-021-25312-0
  • Feuillet, V., Canard, B., & Trautmann, A. (2021). Combining antivirals and immunomodulators to fight COVID-19. Trends in Immunology, 42(1), 31–44. https://doi.org/10.1016/j.it.2020.11.003
  • Funk, C. D., Laferrière, C., & Ardakani, A. (2020). A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Frontiers in Pharmacology, 11, 937. https://doi.org/10.3389/fphar.2020.00937
  • Gobbi, F., Buonfrate, D., Moro, L., Rodari, P., Piubelli, C., Caldrer, S., Riccetti, S., Sinigaglia, A., & Barzon, L. (2021). Antibody response to the BNT162b2 mRNA COVID-19 vaccine in subjects with prior SARS-CoV-2 infection. Viruses, 13(3), 422. https://doi.org/10.3390/v13030422
  • Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan K.-S., Wang D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7, 1–10. https://doi.org/10.1186/s40779-020-00240-0
  • Harrison, A. G., Lin, T., & Wang, P. (2020). Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends in Immunology, 41(12), 1100–1115. https://doi.org/10.1016/j.it.2020.10.004
  • Hedges, J. F., Thompson, M. A., Snyder, D. T., Robison, A., Taylor, M. P., & Jutila, M. A. (2021). Titers, prevalence, and duration of SARS-CoV-2 antibodies in a local COVID-19 outbreak and following vaccination. Vaccines, 9(6), 587. https://doi.org/10.3390/vaccines9060587
  • Heidari-Japelaghi, R., Haddad, R., Valizadeh, M., Dorani-Uliaie, E., & Jalali-Javaran, M. (2019). Elastin-like polypeptide fusions for high-level expression and purification of human IFN-γ in Escherichia coli. Analytical Biochemistry, 585, 113401. https://doi.org/10.1016/j.ab.2019.113401
  • Johnson, M. C., Lyddon, T. D., Suarez, R., Salcedo, B., LePique, M., Graham, M., Ricana, C., Robinson, C., & Ritter, D. G. (2020). Optimized pseudotyping conditions for the SARS-COV-2 spike glycoprotein. Journal of Virology, 94(21), e01062-20. https://doi.org/10.1128/JVI.01062-20
  • Khakdan, F., Alizadeh, H., & Ranjbar, M. (2018). Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. Plant Physiology and Biochemistry. 130, 464–472. https://doi.org/10.1016/j.plaphy.2018.07.026
  • Klumpp-Thomas, C., Kalish, H., Drew, M., Hunsberger, S., Snead, K., Fay, M. P., Mehalko, J., Shunmugavel, A., Wall, V., Frank, P., Denson, J.-P., Hong, M., Gulten, G., Messing, S., Hicks, J., Michael, S., Gillette, W., Hall, M. D., Memoli, M. J., Esposito, D., & Sadtler, K. (2021). Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nature Communications, 12(1), 113. https://doi.org/10.1038/s41467-020-20383-x
  • Kyriakidis, N. C., López-Cortés, A., González, E. V., Grimaldos, A. B., & Prado, E. O. (2021). SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. Npj Vaccines. 6(1), 28. https://doi.org/10.1038/s41541-021-00292-w
  • Lange, A., Borowik, A., Bocheńska, J., Rossowska, J., & Jaskuła, E. (2021). Immune response to COVID-19 mRNA vaccine—A pilot study. Vaccines, 9(5), 488. https://doi.org/10.3390/vaccines9050488
  • Li, Y., Ma, M-l., Lei, Q., Wang, F., Hong, W., Lai, D-y., Hou, H., Xu, Z-w., Zhang, B., Chen, H., Yu, C., Xue, J-b., Zheng, Y-x., Wang, X-n., Jiang, H-w., Zhang, H-n., Qi, H., Guo, S-j., Zhang, Y., … Tao, S-c (2021). Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Reports, 34(13), 108915. https://doi.org/10.1016/j.celrep.2021.108915
  • Liu, Y.-M., Lee, Y.-L., Liu, C.-E., Chen, Y.-C., Tien, N., & Su, W.-C. (2022). Neutralization of SARS-CoV-2 Omicron BA. 1, BA. 4, and BA. 5 by primary ChAdOx1 nCoV-19, mRNA-1273, MVC-COV1901 and booster mRNA-1273 vaccination. Infection, 15, 1-4. https://doi.org/10.1007/s15010-022-01922-8
  • Mendonça, S. A., Lorincz, R., Boucher, P., & Curiel, D. T. (2021). Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. Npj Vaccines, 6(1), 97. https://doi.org/10.1016/B978-0-323-90248-9.00003-6
  • Mohammadzadeh Hosseini Moghri, S. A. H., Kiadeh, S. G. H., & Rahaiee, S. (2021). In silico investigation of lysostaphin-producing novel strains as an enzybiotic against methicillin-resistant Staphylococcus aureus. Informatics in Medicine Unlocked, 24, 100623. https://doi.org/10.1016/j.imu.2021.100623
  • Mohammadzadeh Hosseini Moghri, S. A. H., Ranjbar, M., Hassannia, H., & Khakdan, F. (2021). Designing a novel multi-epitope vaccine against SARS-CoV-2; Implication for viral binds and fusion inhibition through inducing neutralizing antibodies. BioRxiv, 2021-06. https://doi.org/10.1101/2021.06.16.448772
  • Mohammadzadeh Hosseini Moghri, S. A. H., Mahmoodi Chalbatani, G., Ranjbar, M., Raposo, C., & Abbasian, A. (2022). CD171 Multi-epitope peptide design based on immuno-informatics approach as a cancer vaccine candidate for glioblastoma. Journal of Biomolecular Structure and Dynamics, 41(3), 1028–1040. https://doi.org/10.1080/07391102.2021.2020166
  • Mohammadzadeh Hosseini Moghri, S. A. H., Ranjbar, M., Hassannia, H., & Khakdan, F. (2022). In silico analysis of the conserved surface-exposed epitopes to design novel multiepitope peptide vaccine for all variants of the SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2022.2123395
  • Mulinari Turin de Oliveira, N., Fernandes da Silva Figueiredo, I., Cristine Malaquias da Silva, L., Sauruk da Silva, K., Regis Bueno, L., Barbosa da Luz, B., Rita Corso, C., Paula Werner, M. F., Soares Fernandes, E., & Maria-Ferreira, D. (2020). Tissue proteases and immune responses: Influencing factors of COVID-19 severity and mortality. Pathogens, 9(10), 817. https://doi.org/10.3390/pathogens9100817
  • Ni, L., Ye, F., Cheng, M.-L., Feng, Y., Deng, Y.-Q., Zhao, H., Wei, P., Ge, J., Gou, M., Li, X., Sun, L., Cao, T., Wang, P., Zhou, C., Zhang, R., Liang, P., Guo, H., Wang, X., Qin, C.-F., Chen, F., & Dong, C. (2020). Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity, 52(6), 971–977.e3. https://doi.org/10.1016/j.immuni.2020.04.023
  • Pinilla, J., Barber, P., Vallejo-Torres, L., Rodríguez-Mireles, S., López-Valcárcel, B. G., & Serra-Majem, L. (2021). The economic impact of the SARS-COV-2 (COVID-19) pandemic in Spain. International Journal of Environmental Research and Public Health, 18(9), 4708. https://doi.org/10.3390/ijerph18094708
  • Prévost, J., Gasser, R., Beaudoin-Bussières, G., Richard, J., Duerr, R., Laumaea, A., Anand, S. P., Goyette, G., Benlarbi, M., Ding, S., Medjahed, H., Lewin, A., Perreault, J., Tremblay, T., Gendron-Lepage, G., Gauthier, N., Carrier, M., Marcoux, D., Piché, A., … Finzi, A. (2020). Cross-sectional evaluation of humoral responses against SARS-CoV-2 spike. Cell Reports. Medicine, 1(7), 100126. https://doi.org/10.1016/j.xcrm.2020.100126
  • Pushparajah, D., Jimenez, S., Wong, S., Alattas, H., Nafissi, N., & Slavcev, R. A. (2021). Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Advanced Drug Delivery Reviews, 170, 113–141. https://doi.org/10.1016/j.addr.2021.01.003
  • Ravichandran, S., Coyle, E. M., Klenow, L., Tang, J., Grubbs, G., Liu, S., Wang, T., Golding, H., & Khurana, S. (2020). Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Science Translational Medicine, 12(550), eabc3539. https://doi.org/10.1126/scitranslmed.abc3539
  • Rossi, G. A., Sacco, O., Mancino, E., Cristiani, L., & Midulla, F. (2020). Differences and similarities between SARS-CoV and SARS-CoV-2: Spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Infection, 48(5), 665–669. https://doi.org/10.1007/s15010-020-01486-5
  • Sarvestani, R., Latifi, A. M., Alizadeh, H., & Mirzaei, M. (2021). An approach for recombinant epidermal growth factor purification using an elastin-like protein tag. Journal of Applied Biotechnology Reports, 8(2), 127-132. https://doi.org/10.30491/jabr.2020.110243
  • Stellini, R., Gianello, R., Meloni, A., Croce, E., Materzanini, P., & Gomarasca, W. (2022). Prior SARS-CoV-2 infection increases reactogenicity after SARS-COV-2 mRNA vaccine and could delay the administration of the vaccine based on timing of infection. Infection, 50(3), 791–793. https://doi.org/10.1007/s15010-021-01729-z
  • Uengwetwanit, T., Chutiwitoonchai, N., Wichapong, K., & Karoonuthaisiri, N. (2022). Identification of novel SARS-CoV-2 RNA dependent RNA polymerase (RdRp) inhibitors: From in silico screening to experimentally validated inhibitory activity. CSBJ, 20, 882–890. https://doi.org/10.1016/j.csbj.2022.02.001
  • Voysey, M., Clemens, S. A. C., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., Bibi, S., Briner, C., Cicconi, P., Collins, A. M., Colin-Jones, R., Cutland, C. L., Darton, T. C., Dheda, K., Duncan, C. J. A., … Zuidewind, P. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet, 397(10269), 99–111. https://doi.org/10.1016/S0140-6736(20)32661-1
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, X., Dhindsa, R., Povysil, G., Zoghbi, A., Motelow, J., Hostyk, J., et al. (2020). Transcriptional inhibition of host viral entry proteins as a therapeutic strategy for SARS-CoV-2. Preprints https://doi.org/10.20944/preprints202003.0360.v1
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yang, J., Wang, W., Chen, Z., Lu, S., Yang, F., Bi, Z., Bao, L., Mo, F., Li, X., Huang, Y., Hong, W., Yang, Y., Zhao, Y., Ye, F., Lin, S., Deng, W., Chen, H., Lei, H., Zhang, Z., … Wei, X. (2020). A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 586(7830), 572–577. https://doi.org/10.1038/s41586-020-2599-8
  • Yin, J., Li, C., Ye, C., Ruan, Z., Liang, Y., Li, Y., Wu, J., & Luo, Z. (2022). Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. CSBJ, 20, 824–837. https://doi.org/10.1016/j.csbj.2022.01.026
  • Zhang, Q., Xiang, R., Huo, S., Zhou, Y., Jiang, S., Wang, Q., & Yu, F. (2021). Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 6(1), 233. https://doi.org/10.1038/s41392-021-00653-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.