317
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

An overview of mechanism and chemical inhibitors of shikimate kinase

, , , , , & show all
Pages 14582-14598 | Received 09 Sep 2022, Accepted 04 Feb 2023, Published online: 28 Mar 2023

References

  • Arcuri, H. A., Canduri, F., Pereira, J. H., da Silveira, N. J., Camera Júnior, J. C., de Oliveira, J. S., Basso, L. A., Palma, M. S., Santos, D. S., & de Azevedo Júnior, W. F. (2004). Molecular models for shikimate pathway enzymes of Xylella fastidiosa. Biochemical and Biophysical Research Communications, 320(3), 979–991. https://doi.org/10.1016/j.bbrc.2004.05.220
  • Arora, K., Ochoa-Montaño, B., Tsang, P. S., Blundell, T. L., Dawes, S. S., Mizrahi, V., Bayliss, T., Mackenzie, C. J., Cleghorn, L. A., Ray, P. C., Wyatt, P. G., Uh, E., Lee, J., Barry, C. E., 3rd., & Boshoff, H. I. (2014). Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58(11), 6962–6965. https://doi.org/10.1128/AAC.03486-14
  • Badger, J., Sauder, J. M., Adams, J. M., Antonysamy, S., Bain, K., Bergseid, M. G., et al. (2005). Proteins, 60, 787–796. https://doi.org/10.2210/pdb1VIA/pdb
  • Ballell, L., Bates, R. H., Young, R. J., Alvarez-Gomez, D., Alvarez-Ruiz, E., Barroso, V., Blanco, D., Crespo, B., Escribano, J., González, R., Lozano, S., Huss, S., Santos-Villarejo, A., Martín-Plaza, J. J., Mendoza, A., Rebollo-Lopez, M. J., Remuiñan-Blanco, M., Lavandera, J. L., Pérez-Herran, E., … Cammack, N. (2013). Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem, 8(2), 313–321. https://doi.org/10.1002/cmdc.201200428
  • Bentley, R., & Haslam, E. (1990). The shikimate pathway–a metabolic tree with many branches. Critical Reviews in Biochemistry and Molecular Biology, 25(5), 307–384. https://doi.org/10.3109/10409239009090615
  • Biava, M., Porretta, G. C., Poce, G., Supino, S., Deidda, D., Pompei, R., Molicotti, P., Manetti, F., & Botta, M. (2006). Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. Journal of Medicinal Chemistry, 49(16), 4946–4952. https://doi.org/10.1021/jm0602662
  • Blanco, B., Prado, V., Lence, E., Otero, J. M., Garcia-Doval, C., van Raaij, M. J., Llamas-Saiz, A. L., Lamb, H., Hawkins, A. R., & González-Bello, C. (2013). Mycobacterium tuberculosis shikimate kinase inhibitors: Design and simulation studies of the catalytic turnover. Journal of the American Chemical Society, 135(33), 12366–12376. https://doi.org/10.1021/ja405853p
  • Brief history of tuberculosis. (2020). https://www.cdc.gov/tb/worldtbday/history.htm
  • Brown-Elliott, B. A., Rubio, A., & Wallace, R. J. Jr (2018). In Vitro susceptibility testing of a novel benzimidazole, SPR719, against nontuberculous mycobacteria. Antimicrobial Agents and Chemotherapy, 62(11), e01503-18. https://doi.org/10.1128/AAC.01503-18
  • Chadha, V. K. (2009). Progress towards millennium development goals for TB control in seven Asian countries. The Indian Journal of Tuberculosis, 56(1), 30–43. https://pubmed.ncbi.nlm.nih.gov/19402270/
  • Chaisson, R. E., Schecter, G. F., Theuer, C. P., Rutherford, G. W., Echenberg, D. F., & Hopewell, P. C. (1987). Tuberculosis in patients with the acquired immunodeficiency syndrome. Clinical features, response to therapy, and survival. American Review of Respiratory Disease, 136(3), 570–574. https://doi.org/10.1164/ajrccm/136.3.570
  • Chellat, M. F., & Riedl, R. (2017). Pseudouridimycin: The first nucleoside analogue that selectively inhibits bacterial RNA polymerase. Angewandte Chemie (International ed. in English), 56(43), 13184–13186. https://doi.org/10.1002/anie.201708133
  • Cheng, W. C., Chang, Y. N., & Wang, W. C. (2005). Structural basis for shikimate-binding specificity of Helicobacter pylori shikimate kinase. Journal of Bacteriology, 187, 8156–8163. https://doi.org/10.1128/JB.187.23.8156-8163.2005
  • Cheng, W. C., Chen, Y. F., Wang, H. J., Hsu, K. C., Lin, S. C., Chen, T. J., Yang, J. M., & Wang, W. C. (2010). Structures of Helicobacter pylori shikimate kinase reveal a selective inhibitor-induced-fit mechanism. PLoS One, 7, e33481–e33481. https://doi.org/10.1371/journal.pone.0033481
  • Cheng, Franklin, M. C., Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M., Gary, E., Hillerich, B., Yao, Z. K., Carlier, P. R., Totrov, M., & Love, J. D. (2011). Structural genomics for drug design against the pathogen Coxiella burnetii. Proteins, 83, 2124–2136. https://doi.org/10.1002/prot.24841
  • Chirke, S. S., Krishna, J. S., Rathod, B. B., Bonam, S. R., Khedkar, V. M., Rao, B. V., Sampath Kumar, H. M., & Shetty, P. R. (2017). Synthesis of triazole derivatives of 9-ethyl-9H-carbazole and dibenzo[b,d]furan and evaluation of their antimycobacterial and immunomodulatory activity. ChemistrySelect, 2(24), 7309–7318. https://doi.org/10.1002/slct.201701377
  • Curtidor, H., Arevalo-Pinzon, G., Bermudez, A., Calderon, D., Vanegas, M., Patino, L. C., Patarroyo, M. A., & Patarroyo, M. E. (2012). Binding activity, structure, and immunogenicity of synthetic peptides derived from Plasmodium falciparum CelTOS and TRSP proteins. Amino Acids, 43, 365–378. https://doi.org/10.1007/s00726-011-1087-8
  • Dadlani, V. G., Chhabhaiya, H., Somani, R. R., & Tripathi, P. K. (2022). Synthesis, molecular docking, and biological evaluation of novel 1,2,4-triazole-isatin derivatives as potential Mycobacterium tuberculosis shikimate kinase inhibitors. Chemical Biology & Drug Design, 100(2), 230–244. https://doi.org/10.1111/cbdd.14060
  • Debnath, J., Siricilla, S., Wan, B., Crick, D. C., Lenaerts, A. J., Franzblau, S. G., & Kurosu, M. (2012). Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 55(8), 3739–3755. https://doi.org/10.1021/jm201608g
  • Dhaliwal, B., Nichols, C. E., Ren, J., Lockyer, M., Charles, I., Hawkins, A. R., & Stammers, D. K. (2004). Crystallographic studies of shikimate binding and induced conformational changes in Mycobacterium tuberculosis shikimate kinase. FEBS Letters, 574(1–3), 49–54. https://doi.org/10.1016/j.febslet.2004.08.005
  • Dias, M. V., Faím, L. M., Vasconcelos, I. B., de Oliveira, J. S., Basso, L. A., Santos, D. S., & de Azevedo, W. F. Jr (2007). Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 63(1), 1–6. https://doi.org/10.1107/S1744309106046823
  • Elliott, A. M., Halwiindi, B., Hayes, R. J., Luo, N., Mwinga, A. G., Tembo, G., Machiels, L., Steenbergen, G., Pobee, J. O., Nunn, P., & McAdam, K. P. (1995). The impact of human immunodeficiency virus on mortality of patients treated for tuberculosis in a cohort study in Zambia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 89(1), 78–82. https://doi.org/10.1016/0035-9203(95)90668-1
  • Faim, L. M., Kias, M. V. B., & Vasconcelos, I. G. (2008). Crystal structure of shikimate kinase from Mycobacterium tuberculosis in complex with AMP-PNP. Deposited 11/11/2008. Protein Data Bank. https://doi.org/10.2210/pdb3baf/pdb
  • Fox, W., Ellard, G. A., & Mitchison, D. A. (1999). Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. The International Journal of Tuberculosis and Lung Disease: The Official Journal of the International Union against Tuberculosis and Lung Disease, 3(10), S231–S279. https://pubmed.ncbi.nlm.nih.gov/10529902/
  • Freitas de Freitas, T., Roth, C. D., Abbadi, B. L., Hopf, F. S. M., Perelló, M. A., de Matos Czeczot, A., de Souza, E. V., Borsoi, A. F., Machado, P., Bizarro, C. V., & Basso, L. A. (2022). Identification of potential inhibitors of Mycobacterium tuberculosis shikimate kinase: Molecular docking, in-silico toxicity and invitro experiments. Journal of Computer Aided Molecular Design, 37, 117–128. https://doi.org/10.1007/s/10822-022-00495-w
  • Gan, J., Gu, Y., Li, Y., Yan, H., & Ji, X. (2006). Crystal structure of Mycobacterium tuberculosis shikimate kinase in complex with shikimic acid and an ATP analogue. Biochemistry, 45(28), 8539–8545. https://doi.org/10.1021/bi0606290
  • Gonzalez-Bello, C. (2016). Inhibition of shikimate kinase and type II dehydroquinase for antibiotic discovery: Structure-based design and simulation studies. Current Topics in Medicinal Chemistry, 16, 960–977.
  • Gordon, S., Simithy, J., Goodwin, D. C., & Calderón, A. I. (2014). Selective Mycobacterium tuberculosis shikimate kinase inhibitors as potential antibacterials. Perspectives in Medicinal Chemistry, 7, 9–20. https://doi.org/10.4137/PMC.S13212
  • Görisch, H. (1978). On the mechanism of the chorismate mutase reaction. Biochemistry, 17(18), 3700–3705. https://doi.org/10.1021/bi00611a004
  • Grzegorzewicz, A. E., Pham, H., Gundi, V. A., Scherman, M. S., North, E. J., Hess, T., Jones, V., Gruppo, V., Born, S. E., Korduláková, J., Chavadi, S. S., Morisseau, C., Lenaerts, A. J., Lee, R. E., McNeil, M. R., & Jackson, M. (2012). Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nature Chemical Biology, 8(4), 334–341. https://doi.org/10.1038/nchembio.794
  • Gu, Y., Reshetnikova, L., Li, Y., Wu, Y., Yan, H., Singh, S., & Ji, X. (2002). Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. Journal of Molecular Biology, 319(3), 779–789. https://doi.org/10.1016/S0022-2836(02)00339-X
  • Hartmann, M. D., Bourenkov, G. P., Oberschall, A., Strizhov, N., & Bartunik, H. D. (2006). Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. Journal of Molecular Biology, 364(3), 411–423. https://doi.org/10.1016/j.jmb.2006.09.001
  • Herrmann, K. M. (1995). The shikimate pathway: Early steps in the biosynthesis of aromatic compounds. The Plant Cell, 7(7), 907–919. https://doi.org/10.1105/tpc.7.7.907
  • Höner Zu Bentrup, K., Miczak, A., Swenson, D. L., & Russell, D. G. (1999). Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. Journal of Bacteriology, 181(23), 7161–7167. https://doi.org/10.1128/JB.181.23.7161-7167.1999
  • Hsu, K. C., Cheng, W. C., Chen, Y. F., Wang, H. J., Li, L. T., Wang, W. C., & Yang, J. M. (2012). Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One, 7(2), e32142. https://doi.org/10.1371/journal.pone.0032142
  • Hugonnet, J. E., Tremblay, L. W., Boshoff, H. I., Barry, C. E., 3rd., & Blanchard, J. S. (2009). Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science (New York, N.Y.), 323(5918), 1215–1218. https://doi.org/10.1126/science.1167498
  • Igarashi, M., Nakagawa, N., Doi, N., Hattori, S., Naganawa, H., & Hamada, M. A. S. A. (2003). Caprazamycin B, a novel anti-tuberculosis antibiotic, from Streptomyces sp. The Journal of Antibiotics, 56(6), 580–583. https://doi.org/10.7164/antibiotics.56.580
  • Iseman, M. D. (1993). Treatment of multidrug-resistant tuberculosis. The New England Journal of Medicine, 329(11), 784–791. https://doi.org/10.1056/nejm199309093291108
  • Jackson, M., Raynaud, C., Lanéelle, M. A., Guilhot, C., Laurent-Winter, C., Ensergueix, D., Gicquel, B., & Daffé, M. (1999). Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Molecular Microbiology, 31(5), 1573–1587. https://doi.org/10.1046/j.1365-2958.1999.01310.x
  • Jeyakanthan, J., Nithya, N., Shimada, A., Velmurugan, D., Ebihara, A., Shinkai, A., Kuramitsu, S., Shiro, Y., & Yokoyama, S. (2008). Crystal structure of Shikimate kinase (aq_2177) from Aquifex Aeolicus vf5. RIKEN Structural Genomics/Proteomics Initiative (RSGI), 2008-05-13. https://doi.org/10.2210/pdb2PT5/pdb
  • Juliasih, N. N., Mertaniasih, N. M., Hadi, C., Soedarsono, Sari, R. M., & Alfian, I. N. (2020). Factors affecting tuberculosis patients’ quality of life in Surabaya, Indonesia. Journal of Multidisciplinary Healthcare, 13, 1475–1480. https://doi.org/10.2147/JMDH.S274386
  • Kaczmarek, A. (2014). Target validation of shikimate kinase inhibitors: A structural and kinetic perspective. Journal of Medicinal Chemistry, 57(17), 7056–7071.
  • Kailasam, P., & Holliday, G. L. (2015). Structure-based target validation using shikimate kinase inhibitors. Bioorganic & Medicinal Chemistry, 23(17), 5306–5317.
  • Kang, S., Kim, R. Y., Seo, M. J., Lee, S., Kim, Y. M., Seo, M., Seo, J. J., Ko, Y., Choi, I., Jang, J., Nam, J., Park, S., Kang, H., Kim, H. J., Kim, J., Ahn, S., Pethe, K., Nam, K., No, Z., & Kim, J. (2014). Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. Journal of Medicinal Chemistry, 57(12), 5293–5305. https://doi.org/10.1021/jm5003606
  • Kast, P., Tewari, B. Y., Wiest, O., Hilvert, D., Houk, K. N., & Goldberg, R. N. (1997). Thermodynamics of the conversion of chorismate to prephenate: Experimental results and theoretical predictions. The Journal of Physical Chemistry B, 101(50), 10976–10982. https://doi.org/10.1021/jp972501l
  • Kaye, K., & Frieden, T. R. (1996). Tuberculosis control: The relevance of classic principles in an era of acquired immunodeficiency syndrome and multidrug resistance. Epidemiologic Reviews, 18(1), 52–63. https://doi.org/10.1093/oxfordjournals.epirev.a017916
  • Kitagawa, W., & Tamura, T. (2008). A quinoline antibiotic from Rhodococcus erythropolis JCM 6824. The Journal of Antibiotics, 61(11), 680–682. https://doi.org/10.1038/ja.2008.96
  • Kochi, A. (1991). The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle, 72(1), 1–6. https://doi.org/10.1016/0041-3879(91)90017-m
  • Kolb, A., & Schirmer, T. (2012). Target validation of shikimate kinases. Current Opinion in Chemical Biology, 16(4), 481–491.
  • Krell, T., Maclean, J., Boam, D. J., Cooper, A., Resmini, M., Brocklehurst, K., Kelly, S. M., Price, N. C., Lapthorn, A. J., & Coggins, J. R. (2001). Biochemical and X-ray crystallographic studies on shikimate kinase: The important structural role of the P-loop lysine. Protein Science, 10(6), 1137–1149. https://doi.org/10.1110/ps.52501
  • Krishnasamy, S. K., Namasivayam, V., Mathew, S., Eakambaram, R. S., Ibrahim, I. A., Natarajan, A., & Palaniappan, S. (2016). Design, synthesis, and characterization of some hybridized pyrazolone pharmacophore analogs against Mycobacterium tuberculosis. Archiv Der Pharmazie, 349(5), 383–397. https://doi.org/10.1002/ardp.201600019
  • Kumar, M., Verma, S., Sharma, S., Srinivasan, A., Singh, T. P., & Kaur, P. (2010). Structure-based in silico design of a high-affinity dipeptide inhibitor for novel protein drug target shikimate kinase of Mycobacterium tuberculosis. Chemical Biology & Drug Design, 76(3), 277–284. https://doi.org/10.1111/j.1747-0285.2010.01005.x
  • Kurosu, M., & Crick, D. C. (2009). MenA is a promising drug target for developing novel lead molecules to combat Mycobacterium tuberculosis. Medicinal Chemistry, 5(2), 197–207. https://doi.org/10.2174/157340609787582882
  • Lechartier, B., Hartkoorn, R. C., & Cole, S. T. (2012). In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 56(11), 5790–5793. https://doi.org/10.1128/AAC.01476-12
  • Lenaerts, A. J., Gruppo, V., Marietta, K. S., Johnson, C. M., Driscoll, D. K., Tompkins, N. M., Rose, J. D., Reynolds, R. C., & Orme, I. M. (2005). Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrobial Agents and Chemotherapy, 49(6), 2294–2301. https://doi.org/10.1128/AAC.49.6.2294-2301.2005
  • Longo, D. L., Fauci, A. S., Hauser, S. L., & Jameson, J. L. (2012). Harrison’s principles of internal medicine (18th ed.). McGraw Hill. 165: Tuberculosis. https://books.google.co.in/books?id=RSLZvLBjjF4C&pg=PT141&lpg=PT141&dq=L.+Fauci.+Harrison%27s+Principles+of+Internal+Medicine+(18th+ed.).+New+York:+McGraw+Hill.+pp.+Chapter+165:+Tuberculosis+(2012).&source=bl&ots=ONg0FyjHKx&sig=ACfU3U3C5caH01HMcvRmmsE8Mmd5dypepQ&hl=en&sa=X&ved=2ahUKEwiz3a7B6OX2AhVezzgGHcFcA6cQ6AF6BAgZEAM.
  • Makarov, V., Lechartier, B., Zhang, M., Neres, J., Sar, A. M., Raadsen, S. A., Hartkoorn, R. C., Ryabova, O. B., Vocat, A., Decosterd, L. A., Widmer, N., Buclin, T., Bitter, W., Andries, K., Pojer, F., Dyson, P. J., & Cole, S. T. (2014). Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Molecular Medicine, 6(3), 372–383. https://doi.org/10.1002/emmm.201303575
  • Makarov, V., Manina, G., Mikusova, K., Möllmann, U., Ryabova, O., Saint-Joanis, B., Dhar, N., Pasca, M. R., Buroni, S., Lucarelli, A. P., Milano, A., De Rossi, E., Belanova, M., Bobovska, A., Dianiskova, P., Kordulakova, J., Sala, C., Fullam, E., Schneider, P., … Cole, S. T. (2009). Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science (New York, N.Y.), 324(5928), 801–804. https://doi.org/10.1126/science.1171583
  • Makarov, V., Neres, J., Hartkoorn, R. C., Ryabova, O. B., Kazakova, E., Šarkan, M., Huszár, S., Piton, J., Kolly, G. S., Vocat, A., Conroy, T. M., Mikušová, K., & Cole, S. T. (2015). The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 59(8), 4446–4452. https://doi.org/10.1128/AAC.00778-15
  • McShane, H. (2005). Co-infection with HIV and TB: Double trouble. International Journal of STD & AIDS, 16(2), 95–101. https://doi.org/10.1258/0956462053057576
  • Mehra, R., Rajput, V. S., Gupta, M., Chib, R., Kumar, A., Wazir, P., Khan, I. A., & Nargotra, A. (2016). Benzothiazole derivative as a novel mycobacterium tuberculosis shikimate kinase inhibitor: Identification and elucidation of its allosteric mode of inhibition. Journal of Chemical Information and Modeling, 56(5), 930–940. https://doi.org/10.1021/acs.jcim.6b00056
  • Michel, G., Roszak, A. W., Sauvé, V., Maclean, J., Matte, A., Coggins, J. R., Cygler, M., & Lapthorn, A. J. (2003). Structures of shikimate dehydrogenase AroE and its Paralog YdiB. A common structural framework for different activities. Journal of Biological Chemistry, 278(21), 19463–19472. https://doi.org/10.1074/jbc.M300794200
  • Mikusova, K., Makarov, V., & Neres, J. (2013). DprE1–from the discovery to the promising tuberculosis drug target. Current Pharmaceutical Design, 20(27), 4379–4403. https://doi.org/10.2174/138161282027140630122724
  • Millar, G., Lewendon, A., Hunter, M. G., & Coggins, J. R. (1986). The cloning and expression of the aroL gene from Escherichia coli K12. Purification and complete amino acid sequence of shikimate kinase II, the aroL-gene product. Biochemical Journal, 237(2), 427–437. https://doi.org/10.1042/bj2370427
  • Minasov, G., Light, S. H., Halavaty, A., Shuvalova, L., Papazisi, L., & Anderson, W. F., Center for Structural Genomics of Infectious Diseases (CSGID). (2012). 1.7 Angstrom Resolution Crystal Structure of Shikimate Kinase from Bacteroides thetaiotaomicron. https://doi.org/10.2210/pdb3VAA/pdb
  • Monga, V., Goyal, K., Steindel, M., Malhotra, M., Rajani, D. P., & Rajani, S. D. (2014). Synthesis and evaluation of new chalcones, derived pyrazoline and cyclohexenone derivatives as potent antimicrobial, anti-tubercular and antileishmanial agents. Medicinal Chemistry Research, 23(4), 2019–2032. https://doi.org/10.1007/s00044-013-0803-1
  • Mowbray, S. L., Kathiravan, M. K., Pandey, A. A., & Odell, L. R. (2014). Inhibition of glutamine synthetase: A potential drug target in Mycobacterium tuberculosis. Molecules (Basel, Switzerland), 19(9), 13161–13176. https://doi.org/10.3390/molecules190913161
  • National Tuberculosis Control Programme. (2007). Tuberculosis control in Bangladesh: Annual report 2007. National Tuberculosis Control Programme, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of Bangladesh, 37. http://www.globalhealthdelivery.org/files/ghd/files/ghd-010_bracs_tb_program_lapkovc.pdf
  • New Drug Therapy Approvals. (2019). US Food and Drug Administration. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2019
  • Nunes, J., Duque, M. A., de Freitas, T. F., Galina, L., Timmers, L., Bizarro, C. V., Machado, P., Basso, L. A., & Ducati, R. G. (2020). Mycobacterium tuberculosis shikimate pathway enzymes as targets for the rational design of anti-tuberculosis drugs. Molecules (Basel, Switzerland), 25(6), 1259. https://doi.org/10.3390/molecules25061259
  • O’Donnell, M. R., Reddy, D., & Saukkonen, J. J. (2014). Antimycobacterial agents. In D. Kasper, A. Fauci, S. Hauser, D. Longo, J. Jameson, & J. Loscalzo (Eds.), Harrison’s principles of internal medicine, 19e. McGraw Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=1130&sectionid=79737263
  • O’Malley, T., Alling, T., Early, J. V., Wescott, H. A., Kumar, A., Moraski, G. C., Miller, M. J., Masquelin, T., Hipskind, P. A., & Parish, T. (2018). Imidazopyridine compounds inhibit mycobacterial growth by depleting ATP levels. Antimicrobial Agents and Chemotherapy, 62(6), e02439–17. https://doi.org/10.1128/AAC.02439-17
  • O’Neill, D. A. (2008). Shikimate kinase target validation: Applications to drug Pedro discovery. Current Topics in Medicinal Chemistry, 8(10), 925–937.
  • Ojeda-May, P. (2021). Exploring the mechanism of shikimate kinase through quantum mechanical and molecular mechanical (QM/MM) methods. Biophysica, 1(3), 334–343. https://doi.org/10.3390/biophysica1030025
  • Oursler, K. K., Moore, R. D., Bishai, W. R., Harrington, S. M., Pope, D. S., & Chaisson, R. E. (2002). Survival of patients with pulmonary tuberculosis: Clinical and molecular epidemiologic factors. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 34(6), 752–759. https://doi.org/10.1086/338784
  • Pandey, S., Dhamija, E., Kumar, S., Yadav, P., Narender, T., Dasgupta, A., Ramachandran, R., & Srivastav, K. (2020). Identification of active molecules against Mycobacterial Shikimate Kinase from Chemical library and their affinity with different domains. Briefings in Bioinformatics, https://doi.org/10.22541/au.160491622.24853329/v1
  • Parwati, I., van Crevel, R., & van Soolingen, D. (2010). Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. The Lancet Infectious Diseases, 10(2), 103–111. https://doi.org/10.1016/S1473-3099(09)70330-5
  • Pereira, J. H., de Oliveira, J. S., Canduri, F., Dias, M. V., Palma, M. S., Basso, L. A., Santos, D. S., & de Azevedo, W. F. Jr (2004). Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallographica Section D Biological Crystallography, 60(12), 2310–2319. https://doi.org/10.1107/S090744490402517X
  • Pernas, M., Blanco, B., Lence, E., Thompson, P., Alastair, H. R., & Bello, C. G. (2019). Synthesis of rigidified shikimic acid derivatives by ring-closing metathesis to imprint inhibitor efficacy against shikimate kinase enzyme. Organic Chemistry Frontiers, 6(14), 2514–2528. https://pubs.rsc.org/en/content/articlelanding/2019/qo/c9qo00562e. https://doi.org/10.1039/C9QO00562E
  • Pissinate, K., Villela, A. D., Rodrigues-Junior, V., Giacobbo, B. C., Grams, E. S., Abbadi, B. L., Trindade, R. V., Roesler Nery, L., Bonan, C. D., Back, D. F., Campos, M. M., Basso, L. A., Santos, D. S., & Machado, P. (2016). 2-(Quinolin-4-yloxy)acetamides are active against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. ACS Medicinal Chemistry Letters, 7(3), 235–239. https://doi.org/10.1021/acsmedchemlett.5b00324
  • Poce, G., Consalvi, S., Venditti, G., Alfonso, S., Desideri, N., Fernandez-Menendez, R., Bates, R. H., Ballell, L., Barros Aguirre, D., Rullas, J., De Logu, A., Gardner, M., Ioerger, T. R., Rubin, E. J., & Biava, M. (2019). Novel pyrazole-containing compounds active against Mycobacterium tuberculosis. ACS Medicinal Chemistry Letters, 10(10), 1423–1429. https://doi.org/10.1021/acsmedchemlett.9b00204
  • Rajput, V. S., Mehra, R., Kumar, S., Nargotra, A., Singh, P. P., & Khan, I. A. (2016). Screening of anti-tubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis. Applied Microbiology and Biotechnology, 100(12), 5415–5426. https://doi.org/10.1007/s00253-015-7268-8
  • Ramakant, B. (2009). 36 million people with TB cured. World Health Organization. http://www.weeklyblitz.net/363
  • Reddy, M. R., Krishnasamy, S. K., & Kathiravan, M. K. (2020). Identification of novel scaffold using ligand and structure-based approach targeting shikimate kinase. Bioorganic Chemistry, 102, 104083. https://doi.org/10.1016/j.bioorg.2020.104083
  • Remuinan, M. J., Perez-Herran, E., Rullas, J., Alemparte, C., Martınez-Hoyos, M., Dow, D. J., Afari, J., Mehta, N., Esquivias, J., Jiménez, E., Ortega-Muro, F., Fraile-Gabaldón, M. T., Spivey, V. L., Loman, N. J., Pallen, M. J., Constantinidou, C., Minick, D. J., Cacho, M., Rebollo-Lopez, M. J., … Cammack, N. (2013). Tetrahydropyrazolo [1,5-a] pyrimidine-3-carboxamide and N-benzyl-60, 70-dihydrospiro [piperidine-4, 40-thieno [3,2-c] pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3. PLoS One, 8(4), e60933. https://doi.org/10.1371/journal.pone.0060933
  • Rios-Soto, L., Téllez-Valencia, A., Sierra-Campos, E., Valdez-Solana, M., Cisneros-Martínez, J., Gómez Palacio-Gastélum, M., Castillo-Villanueva, A., & Avitia-Domínguez, C. (2021). Finding the first potential inhibitors of shikimate kinase from methicillin resistant Staphylococcus aureus through computer-assisted drug design. Molecules (Basel, Switzerland), 26(21), 6736. https://doi.org/10.3390/molecules26216736
  • Rios-Soto, L., Téllez-Valencia, A., Sierra-Campos, E., Valdez-Solana, M., Cisneros-Martínez, J., Gómez Palacio-Gastélum, M., Castillo-Villanueva, A., & Avitia-Domínguez, C. (2021). Finding the first potential inhibitors of shikimate kinase from methicillin resistant Staphylococcus aureus through computer-assisted drug design. Molecules, 26(21), 6736. https://doi.org/10.3390/molecules26216736
  • Roberts, C. W., Roberts, F., Lyons, R. E., Kirisits, M. J., Mui, E. J., Finnerty, J., Johnson, J. J., Ferguson, D. J., Coggins, J. R., Krell, T., Coombs, G. H., Milhous, W. K., Kyle, D. E., Tzipori, S., Barnwell, J., Dame, J. B., Carlton, J., & McLeod, R. (2002). The shikimate pathway and its branches in apicomplexan parasites. The Journal of Infectious Diseases, 185(s1), S25–S36. https://doi.org/10.1086/338004
  • Sahu, P. K., Mohapatra, P. K., Rajani, D. P., & Raval, M. K. (2020). Structure-based discovery of narirutin as a shikimate kinase inhibitor with anti-tubercular potency. Current Computer-Aided Drug Design, 16(5), 523–529. https://doi.org/10.2174/1573409915666191025112150
  • Sarathy, J. P., Ragunathan, P., Shin, J., Cooper, C. B., Upton, A. M., Grüber, G., & Dick, T. (2019). TBAJ-876 retains bedaquiline’s activity against subunits c and ε of Mycobacterium tuberculosis F-ATP synthase. Antimicrobial Agents and Chemotherapy, 63(10), e01191. https://doi.org/10.1128/AAC.01191-19
  • Shirude, P. S., Shandil, R. K., Manjunatha, M. R., Sadler, C., Panda, M., Panduga, V., Reddy, J., Saralaya, R., Nanduri, R., Ambady, A., Ravishankar, S., Sambandamurthy, V. K., Humnabadkar, V., Jena, L. K., Suresh, R. S., Srivastava, A., Prabhakar, K. R., Whiteaker, J., McLaughlin, R. E., … Chatterji, M. (2014). Lead optimization of 1,4-azaindoles as antimycobacterial agents. Journal of Medicinal Chemistry, 57(13), 5728–5737. https://doi.org/10.1021/jm500571f
  • Simithy, J., Fuanta, N. R., Alturki, M., Hobrath, J. V., Wahba, A. E., Pina, I., Rath, J., Hamann, M. T., DeRuiter, J., Goodwin, D. C., & Calderón, A. I. (2018). Slow-binding inhibition of mycobacterium tuberculosis shikimate kinase by manzamine alkaloids. Biochemistry, 57(32), 4923–4933. https://doi.org/10.1021/acs.biochem.8b00231
  • Simithy, J., Reeve, N., Hobrath, J. V., Reynolds, R. C., & Calderón, A. I. (2014). Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis, 94(2), 152–158. https://doi.org/10.1016/j.tube.2013.12.004
  • Stec, J., Onajole, O. K., Lun, S., Guo, H., Merenbloom, B., Vistoli, G., Bishai, W. R., & Kozikowski, A. P. (2016). Indole-2-carboxamide-based MmpL3 inhibitors show exceptional anti-tubercular activity in an animal model of tuberculosis infection. Journal of Medicinal Chemistry, 59(13), 6232–6247. https://doi.org/10.1021/acs.jmedchem.6b00415
  • Stoffels, K., Allix-Béguec, C., Groenen, G., Wanlin, M., Berkvens, D., Mathys, V., Supply, P., & Fauville-Dufaux, M. (2013). From multidrug- to extensively drug-resistant tuberculosis: Upward trends as seen from a 15-year nationwide study. PLoS One, 8(5), e63128. https://doi.org/10.1371/journal.pone.0063128
  • Stover, C. K., Warrener, P., VanDevanter, D. R., Sherman, D. R., Arain, T. M., Langhorne, M. H., Anderson, S. W., Towell, J. A., Yuan, Y., McMurray, D. N., Kreiswirth, B. N., Barry, C. E., & Baker, W. R. (2000). A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 405(6789), 962–966. https://doi.org/10.1038/35016103. https://doi.org/10.1038/35016103
  • Su, C. C., Klenotic, P. A., Bolla, J. R., Purdy, G. E., Robinson, C. V., & Yu, E. W. (2019). MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proceedings of the National Academy of Sciences, 116(23), 11241–11246. https://doi.org/10.1073/pnas.1901346116
  • Takahashi, Y., Igarashi, M., Miyake, T., Soutome, H., Ishikawa, K., Komatsuki, Y., Koyama, Y., Nakagawa, N., Hattori, S., Inoue, K., Doi, N., & Akamatsu, Y. (2013). Novel semisynthetic antibiotics from caprazamycins A-G: Caprazene derivatives and their antibacterial activity. The Journal of Antibiotics, 66(3), 171–178. https://doi.org/10.1038/ja.2013.9
  • TB Alliance. (2019, June 6). Pretomanid and BPaL regimen for treatment of highly resistant tuberculosis [Paper presentation]. Oral Presentation at: Antimicrobial Drugs Advisory Committee, Silver Spring, MD. https://www.fda.gov/media/128001/download
  • TB Alliance. (2022). https://www.Tballiance.org/portfolio
  • TB Database. (2021). http://Tbdb.bu.edu/cgi-bin/GeneDetails.html?id=SRv2539c
  • Tenero, D., Derimanov, G., Carlton, A., Tonkyn, J., Davies, M., Cozens, S., Gresham, S., Gaudion, A., Puri, A., Muliaditan, M., Rullas-Trincado, J., Mendoza-Losana, A., Skingsley, A., & Barros-Aguirre, D. (2019). First-time-in-human study and prediction of early bactericidal activity for GSK3036656, a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment. Antimicrobial Agents and Chemotherapy, 63(8), e00240. https://doi.org/10.1128/AAC.00240-19
  • Thakur, G., Thakur, S., & Thakur, H. (2021). Status and challenges for tuberculosis control in India - Stakeholders’ perspective. Indian Journal of Tuberculosis, 68(3), 334–339. https://doi.org/10.1016/j.ijtb.2020.10.001
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Tran, A. T., Watson, E. E., Pujari, V., Conroy, T., Dowman, L. J., Giltrap, A. M., Pang, A., Wong, W. R., Linington, R. G., Mahapatra, S., Saunders, J., Charman, S. A., West, N. P., Bugg, T. D., Tod, J., Dowson, C. G., Roper, D. I., Crick, D. C., Britton, W. J., & Payne, R. J. (2017). Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nature Communications, 8(1), 14414. https://doi.org/10.1038/ncomms14414
  • UniProt Database. (2021). https://www.uniprot.org/uniprot/P9WPY3#function
  • US Food and Drug Administration. (2022). Drug approvals and databases. https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases
  • von Groote-Bidlingmaier, F., Patientia, R., Sanchez, E., Balanag, V., Ticona, E., Segura, P., Cadena, E., Yu, C., Cirule, A., Lizarbe, V., Davidaviciene, E., Domente, L., Variava, E., Caoili, J., Danilovits, M., Bielskiene, V., Staples, S., Hittel, N., Petersen, C., … Gupta, R. (2019). Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: A multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. The Lancet Respiratory Medicine, 7(3), 249–259. https://doi.org/10.1016/S2213-2600(18)30426-0
  • Wallis, R. S., Dawson, R., Friedrich, S. O., Venter, A., Paige, D., Zhu, T., Silvia, A., Gobey, J., Ellery, C., Zhang, Y., Eisenach, K., Miller, P., & Diacon, A. H. (2014). Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One, 9(4), e94462. https://doi.org/10.1371/journal.pone.0094462
  • Weinstein, L. H., Porter, C. A., & Laurencot, H. J. (1962). Role of the shikimic acid pathway in the formation of tryptophan in higher plants: Evidence for an alternative pathway in the bean. Evidence for an Alternative Pathway in the Bean, 194, 205–206. https://ui.adsabs.harvard.edu/link_gateway/1962Natur.194.205W/ https://doi.org/10.1038/194205a0
  • World Health Organization. (2009). Global tuberculosis control 2009: Epidemiology, strategy, financing: WHO report 2009. World Health Organization 303. https://apps.who.int/iris/bitstream/handle/10665/44241/9789241598866_eng.pdf
  • Wu, M. C., Styles, M. Q., Law, B. J., Struck, A. W., Nunns, L., & Micklefield, J. (2015). Engineered biosynthesis of enduracidin lipoglycopeptide antibiotics using the ramoplanin mannosyltransferase Ram29. Microbiology (Reading, England), 161(7), 1338–1347. https://doi.org/10.1099/mic.0.000095
  • Xu, J., Wang, B., Fu, L., Zhu, H., Guo, S., Huang, H., Yin, D., Zhang, Y., & Lu, Y. (2019). In Vitro and In Vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 63(5), e02155-18. https://doi.org/10.1128/AAC.02155-18
  • Yano, T., Kassovska-Bratinova, S., Teh, J. S., Winkler, J., Sullivan, K., Isaacs, A., Schechter, N. M., & Rubin, H. (2011). Reduction of clofazimine by mycobacterial type 2 NADH: Quinone oxidoreductase: A pathway for the generation of bactericidal levels of reactive oxygen species. The Journal of Biological Chemistry, 286(12), 10276–10287. https://doi.org/10.1074/jbc.M110.200501
  • Young Lag, C. (2018). Delpazolid (LCB01-0371), Oxazolidinone antibiotic for MDR-TB LegoChem Biosciences. In 2018 WGND Annual Meeting. https://www.newTbdrugs.org/sites/default/files/meetings/files/07_WGND%20presentation-Lego-Chem%20Bio.pdf
  • Zong, Z., Jing, W., Shi, J., Wen, S., Zhang, T., Huo, F., Shang, Y., Liang, Q., Huang, H., & Pang, Y. (2018). Comparison of in vitro activity and MIC distributions between the novel oxazolidinone delpazolid and linezolid against multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in China. Antimicrobial Agents and Chemotherapy, 62(8), e00165-18. https://doi.org/10.1128/AAC.00165-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.