252
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeting Olokizumab-Interleukin 6 interaction interface to discover novel IL-6 inhibitors

, , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 14003-14015 | Received 05 Oct 2022, Accepted 29 Jan 2023, Published online: 30 Mar 2023

References

  • Akbari, M., & Hassan-Zadeh, V. (2018). IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology, 26(3), 685–698. https://doi.org/10.1007/s10787-018-0458-0
  • Allegra, A., Penna, G., Alonci, A., Russo, S., Greve, B., Innao, V., Minardi, V., & Musolino, C. (2013). Monoclonal antibodies: potential new therapeutic treatment against multiple myeloma. European Journal of Haematology, 90(6), 441–468. https://doi.org/10.1111/ejh.12107
  • Allen, S. J., & Lumb, K. J. (2020). Chapter Ten - Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. In R. Donev (Ed.), Advances in protein chemistry and structural biology (pp. 253–303). Academic Press.
  • Azevedo, A., Cunha, V., Teixeira, A. L., & Medeiros, R. (2011). IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World Journal of Clinical Oncology, 2(12), 384–396. https://doi.org/10.5306/wjco.v2.i12.384
  • Bojadzic, D., & Buchwald, P. (2018). Toward small-molecule inhibition of protein-protein interactions: general aspects and recent progress in targeting costimulatory and coinhibitory (immune checkpoint) interactions. Current Topics in Medicinal Chemistry, 18(8), 674–699. https://doi.org/10.2174/1568026618666180531092503
  • Boulanger, M. J., Chow, D-c., Brevnova, E. E., & Garcia, K. C. (2003). Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science (New York, NY), 300(5628), 2101–2104. https://doi.org/10.1126/science.1083901
  • Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X., Yang, W., York, D. M., … Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., SiMMerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Castelli, M. S., McGonigle, P., & Hornby, P. J. (2019). The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacology Research & Perspectives, 7(6), e00535. https://doi.org/10.1002/prp2.535
  • Choi, J. M., Rotimi, O. O., O'Carroll, S. J., & Nicholson, L. F. (2016). IL-6 stimulates a concentration-dependent increase in MCP-1 in immortalised human brain endothelial cells. F1000Research, 5, 270. https://doi.org/10.12688/f1000research.8153.2
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Eto, D., Lao, C., DiToro, D., Barnett, B., Escobar, T. C., Kageyama, R., Yusuf, I., & Crotty, S. (2011). IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T Cell (Tfh) differentiation. PLoS One, 6(3), e17739. https://doi.org/10.1371/journal.pone.0017739
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • GROMACS. (2021). Manual (Release 2021.02). Retrieved April 30, 2022, from https://doi.org/10.5281/zenodo.4457591
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hirano, T. (2021). IL-6 in inflammation, autoimmunity and cancer. International Immunology, 33(3), 127–148. https://doi.org/10.1093/intimm/dxaa078
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Karkhur, S., Hasanreisoglu, M., Vigil, E., Halim, M. S., Hassan, M., Plaza, C., Nguyen, N. V., Afridi, R., Tran, A. T., Do, D. V., Sepah, Y. J., & Nguyen, Q. D. (2019). Interleukin-6 inhibition in the management of non-infectious uveitis and beyond. Journal of Ophthalmic Inflammation and Infection, 9(1), 17. https://doi.org/10.1186/s12348-019-0182-y
  • Kontoyianni, M., McClellan, L. M., & Sokol, G. S. (2004). Evaluation of docking performance: comparative data on docking algorithms. Journal of Medicinal Chemistry, 47(3), 558–565. https://doi.org/10.1021/jm0302997
  • Kuhn, K. A., Manieri, N. A., Liu, T.-C., & Stappenbeck, T. S. (2014). IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS One, 9(12), e114195. https://doi.org/10.1371/journal.pone.0114195
  • Lacroix, M., Rousseau, F., Guilhot, F., Malinge, P., Magistrelli, G., Herren, S., Jones, S. A., Jones, G. W., Scheller, J., Lissilaa, R., Kosco-Vilbois, M., Johnson, Z., Buatois, V., & Ferlin, W. (2015). Novel insights into interleukin 6 (IL-6) Cis- and trans-signaling pathways by differentially manipulating the assembly of the IL-6 signaling complex. The Journal of Biological Chemistry, 290(45), 26943–26953. https://doi.org/10.1074/jbc.M115.682138
  • Le, M. T., Hoang, V. N., Nguyen, D. N., Bui, T. H. L., Phan, T. V., Huynh, P. N. H., Tran, T. D., & Thai, K. M. (2021). Structure-based discovery of ABCG2 inhibitors: A homology protein-based pharmacophore modeling and molecular docking approach. Molecules, 26(11), 3115. https://doi.org/10.3390/molecules26113115
  • Le, M. T., Mai, T. T., Huynh, P. N. H., Tran, T. D., Thai, K. M., & Nguyen, Q. T. (2020). Structure-based discovery of interleukin-33 inhibitors: a pharmacophore modelling, molecular docking, and molecular dynamics simulation approach. SAR and QSAR in Environmental Research, 31(12), 883–904. https://doi.org/10.1080/1062936X.2020.1837239
  • LeadIT 2.1.8. (2022). Version 2.1.8 [software]. Retrieved February 20, 2022, from www.biosolveit.de/LeadIT.
  • Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. Journal of Molecular Biology, 235(2), 625–634. https://doi.org/10.1006/jmbi.1994.1017
  • Molecular Operating Environment (MOE). (2015). Retrieved January 14, 2022, from https://www.chemcomp.com/Research-MOE_Citations.htm?year=2015.
  • Ngo, T. D., Tran, T. D., Le, M. T., & Thai, K. M. (2016). Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds. Molecular Diversity, 20(4), 945–961. https://doi.org/10.1007/s11030-016-9688-5
  • Oláh, J., Szénási, T., Lehotzky, A., Norris, V., & Ovádi, J. (2022). Challenges in discovering drugs that target the protein-protein interactions of disordered proteins. International Journal of Molecular Sciences, 23(3), 1550. https://doi.org/10.3390/ijms23031550
  • Paonessa, G., Graziani, R., De Serio, A., Savino, R., Ciapponi, L., Lahm, A., Salvati, A. L., Toniatti, C., & Ciliberto, G. (1995). Two distinct and independent sites on IL-6 trigger gp 130 dimer formation and signalling. The EMBO Journal, 14(9), 1942–1951. https://doi.org/10.1002/j.1460-2075.1995.tb07186.x
  • Petta, I., Lievens, S., Libert, C., Tavernier, J., & De Bosscher, K. (2016). Modulation of protein–protein interactions for the development of novel therapeutics. Molecular Therapy: The Journal of the American Society of Gene Therapy, 24(4), 707–718. https://doi.org/10.1038/mt.2015.214
  • Potere, N., Batticciotto, A., Vecchié, A., Porreca, E., Cappelli, A., Abbate, A., Dentali, F., & Bonaventura, A. (2021). The role of IL-6 and IL-6 blockade in COVID-19, Vol. 17, Expert. Rev. Clin. Immunol. Taylor & Francis.
  • Pullamsetti, S. S., Seeger, W., & Savai, R. (2018). Classical IL-6 signaling: a promising therapeutic target for pulmonary arterial hypertension. The Journal of Clinical Investigation, 128(5), 1720–1723. https://doi.org/10.1172/jci120415
  • Rose-John, S., Winthrop, K., & Calabrese, L. (2017). The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nature Reviews. Rheumatology, 13(7), 399–409. https://doi.org/10.1038/nrrheum.2017.83
  • Rosell, M., & Fernández-Recio, J. (2018). Hot-spot analysis for drug discovery targeting protein-protein interactions, Vol. 13, Expert. Opin. Drug. Discov. Taylor & Francis.
  • Rungrotmongkol, T., Nunthaboot, N., Malaisree, M., Kaiyawet, N., Yotmanee, P., Meeprasert, A., & Hannongbua, S. (2010). Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations. Journal of Molecular Graphics & Modelling, 29(3), 347–353. https://doi.org/10.1016/j.jmgm.2010.09.010
  • Sekhar Pagadala, N. (2021). Computational prediction of hERG blockers using homology modelling, molecular docking and QuaSAR studies. Results in Chemistry, 3, 100101. https://doi.org/10.1016/j.rechem.2021.100101
  • Shaw, S., Bourne, T., Meier, C., Carrington, B., Gelinas, R., Henry, A., Popplewell, A., ADAms, R., Baker, T., Rapecki, S., Marshall, D., Moore, A., Neale, H., & Lawson, A. (2014). Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs, 6(3), 774–782. https://doi.org/10.4161/mabs.28612
  • Simulations Plus. (2022). “ADMET Predictor®.” Version 10.3. Retrieved August 10, 2022, from https://www.simulations-plus.com/software/admetpredictor/
  • Thai, K. M., Ngo, T. D., Tran, T. D., & Le, M. T. (2013). Pharmacophore modeling for antitargets. Current Topics in Medicinal Chemistry, 13(9), 1002–1014. https://doi.org/10.2174/1568026611313090004
  • The Protein Data Bank. (2022). Retrieved January 4, 2022, from https://www.rcsb.org/structure/4CNI
  • Tran, Q. H., Nguyen, Q. T., Vo, N. Q., Mai, T. T., Tran, T. T., Tran, T. D., Le, M. T., Trinh, D. T., & Thai, K. M. (2022). Structure-based 3D-Pharmacophore modeling to discover novel interleukin 6 inhibitors: An in silico screening, molecular dynamics simulations and binding free energy calculations. PLoS One, 17(4), e0266632. https://doi.org/10.1371/journal.pone.0266632
  • Tran, T. T. N., Tran, Q. H., Nguyen, Q. T., Le, M. T., Trinh, D. T. T., Tran, V. H., & Thai, K. M. (2022). LY3041658/interleukin-8 complex structure as targets for IL-8 small molecule inhibitors discovery using a combination of in silico methods. SAR and QSAR in Environmental Research, 33(10), 753–778. https://doi.org/10.1080/1062936X.2022.2132536
  • Tran, T. T. N., Tran, Q. H., Nguyen, Q. T., Le, M. T., Trinh, D. T. T., & Thai, K. M. (2022). Identification of potential interleukin-8 inhibitors acting on the interactive site between chemokine and CXCR2 receptor: A computational approach. PLoS One, 17(2), e0264385. https://doi.org/10.1371/journal.pone.0264385
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Verma, R., Yadav, M., Pradhan, D., Bhuyan, R., Aggarwal, S., Nayek, A., & Jain, A. K. (2016). Probing binding mechanism of interleukin-6 and olokizumab: in silico design of potential lead antibodies for autoimmune and inflammatory diseases. Journal of Receptor and Signal Transduction Research, 36(6), 601–616. https://doi.org/10.3109/10799893.2016.1147584
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J. (2009). Comprehensive assessment of ADMET risks in drug discovery. Current Pharmaceutical Design, 15(19), 2195–2219. https://doi.org/10.2174/138161209788682514
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–d1082. https://doi.org/10.1093/nar/gkx1037
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: a fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.