194
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multidimensional virtual screening approaches combined with drug repurposing to identify potential covalent inhibitors of SARS-CoV-2 3CL protease

, , , &
Pages 15262-15285 | Received 26 Dec 2022, Accepted 26 Feb 2023, Published online: 24 Mar 2023

References

  • Aanouz, I., Belhassan, A., El-Khatabi, K., Lakhlifi, T., El-Ldrissi, M., & Bouachrine, M. (2021). Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure & Dynamics, 39(8), 2971–2979. https://doi.org/10.1080/07391102.2020.1758790
  • Abhithaj, J., Francis, D., Sharanya, C. S., Arun, K. G., Sadasivan, C., & Variyar, E. J. (2022). Repurposing simeprevir, calpain inhibitor IV and a cathepsin F inhibitor against SARS-CoV-2 and insights into their interactions with Mpro. Journal of Biomolecular Structure & Dynamics, 40(1), 325–336. https://doi.org/10.1080/07391102.2020.1813200
  • Alamri, M. A., Tahir Ul Qamar, M., Mirza, M. U., Bhadane, R., Alqahtani, S. M., Muneer, I., Froeyen, M., & Salo-Ahen, O. M. H. (2021). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL. Journal of Biomolecular Structure & Dynamics, 39(13), 4936–4948. https://doi.org/10.1080/07391102.2020.1782768
  • Baker, J. D., Uhrich, R. L., Kraemer, G. C., Love, J. E., & Kraemer, B. C. (2021). A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. Plos One, 16(2), e0245962. https://doi.org/10.1371/journal.pone.0245962
  • Banerjee, R., Perera, L., & Tillekeratne, L. M. V. (2021). Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today, 26(3), 804–816. https://doi.org/10.1016/j.drudis.2020.12.005
  • Bauer, R. A. (2015). Covalent inhibitors in drug discovery: From accidental discoveries to avoided liabilities and designed therapies. Drug Discovery Today, 20(9), 1061–1073. https://doi.org/10.1016/j.drudis.2015.05.005
  • Belhassan, A., Chtita, S., Zaki, H., Alaqarbeh, M., Alsakhen, N., Almohtaseb, F., Lakhlifi, T., & Bouachrine, M. (2022). In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling. Journal of Molecular Structure, 1258, 132652–132616. https://doi.org/10.1016/j.molstruc.2022.132652
  • Belhassan, A., Zaki, H., Chtita, S., Alaqarbeh, M., Alsakhen, N., Benlyas, M., Lakhlifi, T., & Bouachrine, M. (2021). Camphor, Artemisinin and Sumac Phytochemicals as inhibitors against COVID-19: Computational approach. Computers in Biology and Medicine, 136, 104758–104717. https://doi.org/10.1016/j.compbiomed.2021.104758
  • Bissantz, C., Kuhn, B., & Stahl, M. (2010). A medicinal chemist’s guide to molecular interactions. Journal of Medicinal Chemistry, 53(14), 5061–5084. https://doi.org/10.1021/jm100112j
  • Byadi, S., Oblak, D., Kassmi, Y., Sadik, K., Hachim, M. E., Podlipnik, C., & Aboulmouhajir, A. (2022). In silico discovery of novel inhibitors from Northern African natural products database against main protease (Mpro) of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2022.2040594
  • Byadi, S., Sadik, K., Hachim, M. E., Daoudi, M., Podlipnik, C., & Aboulmouhajir, A. (2022). Discovery of a new Mcl-1 protein inhibitor through the QSAR approach and molecular docking study. Advanced Theory and Simulations, 5(8), 2100590–2100512. https://doi.org/10.1002/adts.202100590
  • Case, D. A., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Kasavajhala, K., Kovalenko, A., Krasny, R., … Kollman, P. A. (2020). Amber 2020. University of California.
  • Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Chtita, S., Belaidi, S., Qais, F. A., Ouassaf, M., AlMogren, M. M., Al-Zahrani, A. A., Bakhouch, M., Belhassan, A., Zaki, H., Bouachrine, M., & Lakhlifi, T. (2022). Unsymmetrical aromatic disulfides as SARS-CoV-2 Mpro inhibitors: Molecular docking, molecular dynamics, and ADME scoring investigations. Journal of King Saud University - Science, 34(7), 102226–102210. https://doi.org/10.1016/j.jksus.2022.102226
  • Chtita, S., Belhassan, A., Bakhouch, M., Taourati, A. I., Aouidate, A., Belaidi, S., Moutaabbid, M., Belaaouad, S., Bouachrine, M., & Lakhlifi, T. (2021). QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods. Chemometrics and Intelligent Laboratory Systems, 210, 104266–104212. https://doi.org/10.1016/j.chemolab.2021.104266
  • Costa, G., Carta, F., Ambrosio, F. A., Artese, A., Ortuso, F., Moraca, F., Rocca, R., Romeo, I., Lupia, A., Maruca, A., Bagetta, D., Catalano, R., Vullo, D., Alcaro, S., & Supuran, C. T. (2019). A computer-assisted discovery of novel potential anti-obesity compounds as selective carbonic anhydrase VA inhibitors. European Journal of Medicinal Chemistry, 181, 111565–111568. https://doi.org/10.1016/j.ejmech.2019.111565
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Dassault Systemes BIOVIA. (2019). Discovery studio visualizer. http://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php
  • Deng, H., Bannister, T. D., Jin, L., Babine, R. E., Quinn, J., Nagafuji, P., Celatka, C. A., Lin, J., Lazarova, T. I., Rynkiewicz, M. J., Bibbins, F., Pandey, P., Gorga, J., Meyers, H. V., Abdel-Meguid, S. S., & Strickler, J. E. (2006). Synthesis, SAR exploration, and X-ray crystal structures of factor XIa inhibitors containing an α-ketothiazole arginine. Bioorganic & Medicinal Chemistry Letters, 16(11), 3049–3054. https://doi.org/10.1016/j.bmcl.2006.02.052
  • Food and Drug Administration. (2022). Coronavirus (COVID-19) update: FDA authorizes pharmacists to prescribe Paxlovid with certain limitations. Retrieved October 26, 2022, from https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-pharmacists-prescribe-paxlovid-certain-limitations
  • Forni, G., Mantovani, A., & Lin, C.-C A. N. (2021). COVID-19 vaccines: Where we stand and challenges ahead. Cell Death & Differentiation, 28(2), 626–639. https://doi.org/10.1038/s41418-020-00720-9
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09, revision C.01. Gaussian, Inc.
  • Goetz, D. H., Choe, Y., Hansell, E., Chen, Y. T., McDowell, M., Jonsson, C. B., Roush, W. R., McKerrow, J., & Craik, C. S. (2007). Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry, 46(30), 8744–8752. https://doi.org/10.1021/bi0621415
  • Hatmal, M. M., Jaber, S., & Taha, M. O. (2016). Combining molecular dynamics simulation and ligand-receptor contacts analysis as a new approach for pharmacophore modeling: Beta-secretase 1 and check point kinase 1 as case studies. Journal of Computer-Aided Molecular Design, 30(12), 1149–1163. https://doi.org/10.1007/s10822-016-9984-2
  • Hodgson, S. H., Mansatta, K., Mallett, G., Harris, V., Emary, K. R. W., & Pollard, A. J. (2021). What defines an efficacious COVID-19 vaccine? a review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infectious Diseases, 21(2), E26–E35. https://doi.org/10.1016/S1473-3099(20)30773-8
  • Hoffman, R. L., Kania, R. S., Brothers, M. A., Davies, J. F., Ferre, R. A., Gajiwala, K. S., He, M., Hogan, R. J., Kozminski, K., Li, L. Y., Lockner, J. W., Lou, J., Marra, M. T., Mitchell, L. J., Murray, B. W., Nieman, J. A., Noell, S., Planken, S. P., Rowe, T., … Taggart, B. (2020). Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. Journal of Medicinal Chemistry, 63(21), 12725–12747. https://doi.org/10.1021/acs.jmedchem.0c01063
  • Huang, L., Brinen, L. S., & Ellman, J. A. (2003). Crystal structures of reversible ketone-based inhibitors of the cysteine protease cruzain. Bioorganic & Medicinal Chemistry, 11(1), 21–29. https://doi.org/10.1016/S0968-0896(02)00427-3
  • Iketani, S., Forouhar, F., Liu, H. R., Hong, S. J., Lin, F. Y., Nair, M. S., Zask, A., Huang, Y. X., Xing, L., Stockwell, B. R., Chavez, A., & Ho, D. D. (2021). Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nature Communications, 12(1), 1–7. https://doi.org/10.1038/s41467-021-22362-2
  • Irwin, J. J. (2008). Community benchmarks for virtual screening. Journal of Computer-Aided Molecular Design, 22(3–4), 193–199. https://doi.org/10.1007/s10822-008-9189-4
  • Irwin, J. J., Tang, K. G., Young, J., Dandarchuluun, C., Wong, B. R., Khurelbaatar, M., Moroz, Y. S., Mayfield, J., & Sayle, R. A. (2020). ZINC20-a free ultralarge-scale chemical database for ligand discovery. Journal of Chemical Information and Modeling, 60(12), 6065–6073. https://doi.org/10.1021/acs.jcim.0c00675
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kim, J. S., Groll, M., Musiol, H. A., Behrendt, R., Kaiser, M., Moroder, L., Huber, R., & Brandstetter, H. (2002). Navigation inside a protease: Substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum. Journal of Molecular Biology, 324(5), 1041–1050. https://doi.org/10.1016/S0022-2836(02)01153-1
  • Liu, S., Suzuki, Y., Takemasa, E., Watanabe, R., & Mogi, M. (2022). Mast cells promote viral entry of SARS-CoV-2 via formation of chymase/spike protein complex. European Journal of Pharmacology, 930, 175169–175168. https://doi.org/10.1016/j.ejphar.2022.175169
  • Lonsdale, R., & Ward, R. A. (2018). Structure-based design of targeted covalent inhibitors. Chemical Society Reviews, 47(11), 3816–3830. https://doi.org/10.1039/C7CS00220C
  • Marzi, M., Vakil, M. K., Bahmanyar, M., & Zarenezhad, E. (2022). Paxlovid: Mechanism of action, synthesis, and in silico study. Biomed Research International, 2022, 1–16. https://doi.org/10.1155/2022/7341493
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2021). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(7), 2673–2678. https://doi.org/10.1080/07391102.2020.1752802
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of Useful Decoys, Enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. https://doi.org/10.1021/jm300687e
  • Nikolaienko, T. Y., Chuiko, V. S., & Bulavin, L. A. (2019). The dataset of covalent bond lengths resulting from the first-principle calculations. Computational and Theoretical Chemistry, 1163, 112508–112510. https://doi.org/10.1016/j.comptc.2019.112508
  • Pavan, M., Bolcato, G., Bassani, D., Sturlese, M., & Moro, S. (2021). Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1645–1649. https://doi.org/10.1080/14756366.2021.1954919
  • Ramos-Guzman, C. A., Ruiz-Pernia, J. J., & Tunon, I. (2021). Multiscale simulations of SARS-CoV-2 3CL protease inhibition with aldehyde derivatives. role of protein and inhibitor conformational changes in the reaction mechanism. ACS Catalysis, 11(7), 4157–4168. https://doi.org/10.1021/acscatal.0c05522
  • Rodrigues, L., Bento Cunha, R., Vassilevskaia, T., Viveiros, M., & Cunha, C. (2022). Drug repurposing for COVID-19: A review and a novel strategy to identify new targets and potential drug candidates. Molecules, 27(9), 2723–2732. https://doi.org/10.3390/molecules27092723
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Rubin, D., Chan-Tack, K., Farley, J., & Sherwat, A. (2020). FDA approval of remdesivir - a step in the right direction. New England Journal of Medicine, 383(27), 2598–2600. https://doi.org/10.1056/NEJMp2032369
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Sawant, S., Patil, R., Khawate, M., Zambre, V., Shilimkar, V., & Jagtap, S. (2021). Computational assessment of select antiviral phytochemicals as potential SARS-Cov-2 main protease inhibitors: Molecular dynamics guided ensemble docking and extended molecular dynamics. In Silico Pharmacology, 9(1), 44. https://doi.org/10.1007/s40203-021-00107-9
  • Schrödinger Release. (2019). Desmond molecular dynamics system. Schrödinger LLC.
  • Sun, Y. J., Velez, G., Parsons, D. E., Li, K., Ortiz, M. E., Sharma, S., McCray, P. B., Bassuk, A. G., & Mahajan, V. B. (2021). Structure-based phylogeny identifies avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice. Journal of Clinical Investigation, 131(10), 1–13. https://doi.org/10.1172/JCI147973
  • Su, H-x., Yao, S., Zhao, W-f., Li, M-j., Liu, J., Shang, W-j., Xie, H., Ke, C-q., Hu, H-c., Gao, M-n., Yu, K-q., Liu, H., Shen, J-s., Tang, W., Zhang, L-k., Xiao, G-f., Ni, L., Wang, D-w., Zuo, J-p., … Xu, Y-c (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 41(9), 1167–1177. https://doi.org/10.1038/s41401-020-0483-6
  • Su, H. X., Yao, S., Zhao, W. F., Zhang, Y. M., Liu, J., Shao, Q., Wang, Q. X., Li, M. J., Xie, H., Shang, W. J., Ke, C. Q., Feng, L., Jiang, X. R., Shen, J. S., Xiao, G. F., Jiang, H. L., Zhang, L. K., Ye, Y., & Xu, Y. C. (2021). Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nature Communications, 12(1), 1–12. https://doi.org/10.1038/s41467-021-23751-3
  • Tanne, J. H. (2022). Covid-19: FDA authorises pharmacists to prescribe Paxlovid. BMJ (Clinical Research ed.), 378, o1695. https://doi.org/10.1136/bmj.o1695
  • Vankadara, S., Wong, Y. X., Liu, B. P., See, Y. Y., Tan, L., Tan, Q. W., Wang, G., Karuna, R., Guo, X., Tan, S. T., Fong, J. Y., Joy, J., & Chia, C. S. B. (2021). A head-to-head comparison of the inhibitory activities of 15 peptidomimetic SARS-CoV-2 3CLpro inhibitors. Bioorganic & Medicinal Chemistry Letters, 48, 128263–128265. https://doi.org/10.1016/j.bmcl.2021.128263
  • Vuong, W., Khan, M. B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J., Saffran, H. A., McKay, R. T., van Belkum, M. J., Joyce, M. A., Young, H. S., Tyrrell, D. L., Vederas, J. C., & Lemieux, M. J. (2020). Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-18096-2
  • Wang, M. L., Cao, R. Y., Zhang, L. K., Yang, X. L., Liu, J., Xu, M. Y., Shi, Z. L., Hu, Z. H., Zhong, W., & Xiao, G. F. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, R. Y., Hu, Q., Wang, H. N., Zhu, G. H., Wang, M. G., Zhang, Q., Zhao, Y. S., Li, C. Y., Zhang, Y. N., Ge, G. B., Chen, H. Z., & Chen, L. L. (2021). Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. International Journal of Biological Macromolecules, 183, 182–192. https://doi.org/10.1016/j.ijbiomac.2021.04.129
  • WHO. (2022). COVID-19 website. Retrieved December 14, 2022, from https://covid19.who.int/
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Wu, C. R., Liu, Y., Yang, Y. Y., Zhang, P., Zhong, W., Wang, Y. L., Wang, Q. Q., Xu, Y., Li, M. X., Li, X. Z., Zheng, M. Z., Chen, L. X., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yuan, S. G., Chan, H. C. S., & Hu, Z. Q. (2017). Using PyMOL as a platform for computational drug design. WIREs Computational Molecular Science, 7(2), e1298. https://doi.org/10.1002/wcms.1298
  • Zhang, L. L., Lin, D. Z., Sun, X. Y. Y., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhu, K., Borrelli, K. W., Greenwood, J. R., Day, T., Abel, R., Farid, R. S., & Harder, E. (2014). Docking covalent inhibitors: A parameter free approach to pose prediction and scoring. Journal of Chemical Information and Modeling, 54(7), 1932–1940. https://doi.org/10.1021/ci500118s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.