161
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

In silico evaluation of usnic acid derivatives to discover potential antibacterial drugs against DNA gyrase B and DNA topoisomerase IV

ORCID Icon, , , , , & show all
Pages 14904-14913 | Received 27 Dec 2022, Accepted 18 Feb 2023, Published online: 30 Mar 2023

References

  • Alt, S., Mitchenall, L. A., Maxwell, A., & Heide, L. (2011). Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. The Journal of Antimicrobial Chemotherapy, 66(9), 2061–2069. https://doi.org/10.1093/jac/dkr247
  • Armaleo, D., Müller, O., Lutzoni, F., Andrésson, Ó. S., Blanc, G., Bode, H. B., & Xavier, B. B. (2019). The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics, 20(1), 1–33. https://doi.org/10.1186/s12864-019-5629-x
  • Asai, T., Adachi, N., Moriya, T., Oki, H., Maru, T., Kawasaki, M., Suzuki, K., Chen, S., Ishii, R., Yonemori, K., Igaki, S., Yasuda, S., Ogasawara, S., Senda, T., & Murata, T. (2021). Cryo-EM structure of K+-bound hERG channel complexed with the blocker astemizole. Structure (London, England: 1993), 29(3), 203–212.e4. https://doi.org/10.1016/j.str.2020.12.007
  • Behera, B. C., Mahadik, N., & Morey, M. (2012). Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharmaceutical Biology, 50(8), 968–979. https://doi.org/10.3109/13880209.2012.654396
  • Bhowmick, S., Saha, A., AlFaris, N. A., ALTamimi, J. Z., ALOthman, Z. A., Aldayel, T. S., Wabaidur, S. M., & Islam, M. A. (2022). Identification of potent food constituents as SARS-CoV-2 papain-like protease modulators through advanced pharmacoinformatics approaches. Journal of Molecular Graphics & Modelling, 111, 108113. https://doi.org/10.1016/j.jmgm.2021.108113
  • Bellon, S., Parsons, J. D., Wei, Y., Hayakawa, K., Swenson, L. L., Charifson, P. S., Lippke, J. A., Aldape, R., & Gross, C. H. (2004). Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): A single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrobial Agents & Chemotherapy, 48(5), 1856–1864. https://doi.org/10.1128/AAC.48.5.1856-1864.2004
  • Cocchietto, M., Skert, N., Nimis, P., & Sava, G. (2002). A review on usnic acid, an interesting natural compound. Die Naturwissenschaften, 89(4), 137–146. https://doi.org/10.1007/s00114-002-0305-3
  • Cao, J. F., Gong, Y., Wu, M., Yang, X., Xiong, L., Chen, S., & Zhang, X. (2022). Exploring the mechanism of action of licorice in the treatment of COVID-19 through bioinformatics analysis and molecular dynamics simulation. Frontiers in Pharmacology, 13, 1-17. https://doi.org/10.3389/fphar.2022.1003310
  • David, F., Davis, A. M., Gossing, M., Hayes, M. A., Romero, E., Scott, L. H., & Wigglesworth, M. J. (2021). A perspective on synthetic biology in drug discovery and development—Current impact and future opportunities. SLAS Discovery: Advancing Life Sciences R&D, 26(5), 581–603. https://doi.org/10.1177/24725552211000669
  • Galanty, A., Paśko, P., & Podolak, I. (2019). Enantioselective activity of usnic acid: A comprehensive review and future perspectives. Phytochemistry Reviews, 18(2), 527–548. https://doi.org/10.1007/s11101-019-09605-3
  • Hashem, H. E., Amr, A. E. G. E., Nossier, E. S., Elsayed, E. A., & Azmy, E. M. (2020). Synthesis, antimicrobial activity and molecular docking of novel thiourea derivatives tagged with thiadiazole, imidazole and triazine moieties as potential DNA gyrase and topoisomerase IV inhibitors. Molecules, 25(12), 2766. https://doi.org/10.3390/molecules25122766
  • Holdgate, G. A., Tunnicliffe, A., Ward, W. H., Weston, S. A., Rosenbrock, G., Barth, P. T., Taylor, I. W., Pauptit, R. A., & Timms, D. (1997). The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: A thermodynamic and crystallographic study. Biochemistry, 36(32), 9663–9673. https://doi.org/10.1021/bi970294+
  • Ingolfsdottir, K. (2002). Usnic acid. Phytochemistry, 61(7), 729–736. https://doi.org/10.1016/S0031-9422(02)00383-7
  • Kadri, A., & Aouadi, K. (2020). In vitro antimicrobial and α-glucosidase inhibitory potential of enantiopure cycloalkylglycine derivatives: Insights into their in silico pharmacokinetic, druglikeness, and medicinal chemistry properties. Journal of Applied Pharmaceutical Sciences, 10(6), 107–115.
  • Korrapati, S. B., Yedla, P., Pillai, G. G., Mohammad, F., Ch, V. R. R., Bhamidipati, P., Amanchy, R., Syed, R., & Kamal, A. (2021). In-silico driven design and development of spirobenzimidazo-quinazolines as potential DNA gyrase inhibitors. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 134, 111132. https://doi.org/10.1016/j.biopha.2020.111132
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.
  • Liu, Y., Grimm, M., Dai, W. T., Hou, M. C., Xiao, Z. X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 41(1), 138–144.
  • Lang, S. I., Cornelissen, J. H., Klahn, T., Van Logtestijn, R. S., Broekman, R., Schweikert, W., & Aerts, R. (2009). An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology, 97(5), 886–900.
  • Luzina, O. A., & Salakhutdinov, N. F. (2016). Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms. Russian Journal of Bioorganic Chemistry, 42(2), 115–132.
  • Luzina, O. A., & Salakhutdinov, N. F. (2018). Usnic acid and its derivatives for pharmaceutical use: A patent review (2000–2017). Expert Opinion on Therapeutic Patents, 28(6), 477–491.
  • Roney, M., Huq, A. M., Rullah, K., Hamid, H. A., Imran, S., Islam, M. A., & Mohd Aluwi, M. F. F. (2021). Virtual screening-based identification of potent DENV-3 RdRp protease inhibitors via in-house usnic acid derivative database. Journal of Computational Biophysics & Chemistry, 20(8), 797–814.
  • Mir, A., Ismatullah, H., Rauf, S., & Niazi, U. H. (2016). Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Informatics in Medicine Unlocked, 3, 1–6.
  • Mishra, P. M., & Nandi, C. K. (2021). Structural decoding of a small molecular inhibitor on the binding of SARS-CoV-2 to the ACE 2 receptor. The Journal of Physical Chemistry B, 125(30), 8395–8405.
  • Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Zeitschrift Für Naturforschung C, 65(3–4), 157–173.
  • Mitrović, T., Stamenković, S., Cvetković, V., Tošić, S., Stanković, M., Radojević, I., & Marković, S. (2011). Antioxidant, antimicrobial and antiproliferative activities of five lichen species. International Journal of Molecular Sciences, 12(8), 5428–5448.
  • Mayer, M., O'Neill, M. A., Murray, K. E., Santos-Magalhães, N. S., Carneiro-Leão, A. M. A., Thompson, A. M., & Appleyard, V. C. (2005). Usnic acid: A non-genotoxic compound with anti-cancer properties. Anti-Cancer Drugs, 16(8), 805–809.
  • Macedo, D. C. S., Almeida, F. J. F., Wanderley, M. S. O., Ferraz, M. S., Santos, N. P. S., López, A. M. Q., & Lira-Nogueira, M. C. B. (2021). Usnic acid: From an ancient lichen derivative to promising biological and nanotechnology applications. Phytochemistry Reviews, 20(3), 609–630.
  • Maulidiyah, M., Darmawan, A., Ahmad, E., Musdalifah, A., Wibowo, D., Arham, Z., & Nurdin, M. (2021). Antioxidant activity-guided isolation of usnic acid and diffractaic acid compounds from lichen genus Usnea sp. Journal of Applied Pharmaceutical Science, 11(2), 075–083.
  • Mohi El-Deen, E. M., Abd El-Meguid, E. A., Hasabelnaby, S., Karam, E. A., & Nossier, E. S. (2019). Synthesis, docking studies, and in vitro evaluation of some novel thienopyridines and fused thienopyridine–quinolines as antibacterial agents and DNA gyrase inhibitors. Molecules, 24(20), 3650.
  • Nguyen, T. T. H., Dinh, M. H., Chi, H. T., Wang, S. L., Nguyen, Q., Tran, T. D., & Nguyen, A. D. (2019). Antioxidant and cytotoxic activity of lichens collected from Bidoup Nui Ba National Park, Vietnam. Research on Chemical Intermediates, 45(1), 33–49.
  • Nour, H., Abdou, A., Belaidi, S., Jamal, J., Elmakssoudi, A., Dakir, M., & Chtita, S. (2022). Discovery of promising cholinesterase inhibitors for Alzheimer’s disease treatment through DFT, docking, and molecular dynamics studies of eugenol derivatives. Journal of the Chinese Chemical Society, 69(9), 1534–1551.
  • Odabasoglu, F., Cakir, A., Suleyman, H., Aslan, A., Bayir, Y., Halici, M., & Kazaz, C. (2006). Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. Journal of Ethnopharmacology, 103(1), 59–65.
  • Padhi, A. K., Seal, A., Khan, J. M., Ahamed, M., & Tripathi, T. (2021). Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: Insights from atomistic simulations. European Journal of Pharmacology, 894, 173836. https://doi.org/10.1016/j.ejphar.2020.173836
  • Rampone, S., Pagliarulo, C., Marena, C., Orsillo, A., Iannaccone, M., Trionfo, C., Sateriale, D., & Paolucci, M. (2021). In silico analysis of the antimicrobial activity of phytochemicals: Towards a technological breakthrough. Computer Methods & Programs in Biomedicine, 200, 105820. https://doi.org/10.1016/j.cmpb.2020.105820
  • Roney, M., Aluwi, M. F. F. M., Laman, F., Bhuiyan, M. A., & Huq, A. M. (2022). Molecular docking and in silico evaluation of phytochemicals of bioactive methanolic extract of Ipomoea mauritiana Jacq. as anti-bacterial agents. Journal of Computational Biophysics & Chemistry, 1–15.
  • Roney, M., & Aluwi, M. F. F. M. (2022). In silico analysis for discovery of dengue virus inhibitor from natural compounds. ICB-Pharma 2022, AHCPS, 21(05), 499-513.
  • Riaz, F., Hossain, M. S., Roney, M., Ali, Y., Qureshi, S., Muhammad, R., & Ming, L. C. (2022). Evaluation of potential bacterial protease inhibitor properties of selected hydroxyquinoline derivatives: An in silico docking and molecular dynamics simulation approach. Journal of Biomolecular Structure & Dynamics, 3, 1–14.
  • Shivanna, R., & Garampalli, R. H. (2016). Investigation of macrolichens for antifungal potentiality against phytopathogens. Indo American Journal of Pharmaceutical Research, 6(4), 5290–5296.
  • Sun, T. X., Li, M. Y., Zhang, Z. H., Wang, J. Y., Xing, Y., Ri, M., & Jin, X. (2021). Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD‐L1 expression and enhancing T‐lymphocyte tumor‐killing activity. Phytotherapy Research, 35(7), 3916–3935.
  • Sokolov, D. N., Zarubaev, V. V., Shtro, A. A., Polovinka, M. P., Luzina, O. A., Komarova, N. I., & Kiselev, O. I. (2012). Anti-viral activity of (−)-and (+)-usnic acids and their derivatives against influenza virus A (H1N1) 2009. Bioorganic & Medicinal Chemistry Letters, 22(23), 7060–7064.
  • Su, S., Sun, J., Wang, Y., & Xu, Y. (2021). Cardiac hERG K + channel as safety and pharmacological target. In: Pharmacology of potassium channels (pp. 139–166). Springer.
  • Victor, K., Boris, L., Athina, G., Anthi, P., Marija, S., Marina, K., & Marina, S. (2018). Design, synthesis and antimicrobial activity of usnic acid derivatives. MedChemComm, 9(5), 870–882.
  • Weckesser, S., Engel, K., Simon-Haarhaus, B., Wittmer, A., Pelz, K., & Schempp, C. Á. (2007). Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine, 14(7–8), 508–516.
  • Yang, J. M., & Chen, C. C. (2004). GEMDOCK: A generic evolutionary method for molecular docking. Proteins, 55(2), 288–304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.