144
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Elucidating the process of SNPs identification in non-reference genome crops

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 15682-15690 | Received 07 Nov 2022, Accepted 28 Feb 2023, Published online: 05 Apr 2023

References

  • Abmus, J., Schmitt, A. O., Bortfeldt, R. H., & Brockmann, G. A. (2011). NovelSNPer: A fast tool for the identification and characterization of novel SNPs and InDels. Advances in Bioinformatics, 41, 73–84.
  • Altshuler, D., Pollara, V. J., Cowles, C. R., Etten, W. J. V., Baldwin, J., Linton, L., & Lander, E. S. (2000). An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 407(6803), 513–516.
  • Baird, N. A., Ette, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS One, 3(10), e3376.
  • Berthouly-Salazar, C., Mariac, C., Couderc, M., Pouzadoux, J., Floc’h, J. B., & Vigouroux, Y. (2016). Genotyping-by-sequencing SNP identification for crops without a reference genome: Using transcriptome based mapping as an alternative strategy. Frontiers in Plant Science, 157, 777.
  • Boutet, G., Carvalho, S. A., Falque, M., Peterlongo, P., Lhuillier, E., Bouchez, O., Lavaud, C., Pilet-Nayel, M.L., Rivière, N., & Baranger, A. (2016). SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics, 17, 121.
  • Clarke, W. E., Higgins, E. E., Plieske, J., Wieseke, R., Sidebottom, C., Khedikar, Y., Batley, J., Edwards, D., Meng, J., Li, R., Lawley, C. T., Pauquet, J., Laga, B., Cheung, W., Iniguez-Luy, F., Dyrszka, E., Rae, S., Stich, B., Snowdon, R. J., … Parkin, I. A. P. (2016). A high‑density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single‑locus markers in the allotetraploid genome. TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik, 129(10), 1887–1899. https://doi.org/10.1007/s00122-016-2746-7
  • Clevenger, J., Chavarro, C., Pearl, S. A., Akins, P. O., & Jackson, S. A. (2015). Single nucleotide polymorphism identification in polyploids: A review, example and recommendations. Molecular Plant, 8, 831–846.
  • Coetzee, S. G., Rhie, S. K., Berman, B. P., Coetzee, G. A., & Noushmehr, H. (2012). FunciSNP: An R/bio-conductor tool integrating functional non-coding data sets with genetic association studies to identify candidate regulatory SNPs. Nucleic Acids Research, 40, e139.
  • Dereeper, A., & Nicolas, S. (2011). SNiPlay: A web-based tool for detection, management and analysis of SNPs. BMC Bioinformatics, 12, 134–145.
  • Doran, A. G., & Creevey, C. J. (2013). Snpdat: Easy and rapid annotation of results from de novo snp discovery projects for model and non-model organisms. BMC Bioinformatics, 14, 45–52. https://doi.org/10.1186/1471-2105-14-45
  • Eernisse, D. J. (2000). DNA Stacks software package for molecular systematics. http://biology.fullerton.edu/deernisse/dnastacks.
  • Elshire, R. J., Glaubitz, J. C., & Sun, Q. (2011). A robust, simple genotyping by- sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.
  • Eltaher, S., Sallam, A., Emara, H. A., Nower, A. A., Salem, K. F., Börner, A., Baenziger, P. S., & Mourad, A. M. (2022). Genome-wide association mapping revealed SNP alleles associated with spike traits in wheat. Agronomy, 12(6), 1469.
  • Gardner, S. N., Slezak, T., & Hall, B. G. (2015). kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics (Oxford, England), 31(17), 2877–2878. https://doi.org/10.1093/bioinformatics/btv271
  • Goya, R., Sun, M. G., Morin, R. D., & Leung, G. (2010). SNVMix: Predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics, 26, 730–736.
  • Habib, P. T., Alsamman, A. M., Hassanein, S. E., Shereif, G. A., & Hamwieh, A. (2020). SNPector: SNP inspection tool for diagnosing gene pathogenicity and drug response in a naked sequence. F1000Research, 208(2133), 2133.
  • Hackett, C. A., Boskamp, B., Vogogias, A., Preedy, K. F., & Milne, I. (2017). TetraploidSNPMap: Software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage data. Journal of Heredity, 108(4), 438–442.
  • Homer, N. S. (2010). Improved variant discovery through local re-alignment of short –read next generation sequencing data using srma. Genome Biology, 11(10), R99.
  • Howie, B. N., Donnelly, P., & Marchini, J. (2009). Impute-A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics, 5(6), e1000529. https://doi.org/10.1371/journal.pgen.1000529
  • Huang, S., Deng, L., Li, M., Lu, K., Wang, H., Fu, D., Mason, A. S., Liu, S., & Hua, W. (2013). Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genomics, 14, 717.
  • Koboldt, D. C., Chen, K., Wylie, T., Larson, D. E., McLellan, M. D., Mardis, E. R., Weinstock, G. M., Wilson, R. K., & Ding, L. (2009). VarScan: Variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics (Oxford, England), 25(17), 2283–2285. https://doi.org/10.1093/bioinformatics/btp373
  • Langmead, B., Schatz, M. C., Lin, J., Pop, M., & Salzberg, S. L. (2009). Searching for SNPs with cloud computing- SoapSNP. Genome Biology, 10, 134.
  • Larson, D. E., Harns, C. C., Chen, K., Koboldt, D. C., Abbott, T. E., Dooling, D. J., Ley, T. J., Mardis, E. R., Wilson, R. K., & Ding, L. (2011). SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics, 28, 311–317.
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). Genome project data processing subgroup-the sequence alignment/map (SAM) format and SAM tools. Bioinformatics, 25, 2078–2089.
  • Li, Y., Willer, C. J., Ding, J., Scheet, P., & Abecasis, G. R. (2010). MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiology, 34, 816–834.
  • Mckennal, A., Hannal, M., & Banks, E. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.
  • Meyer, M., Stenzel, U., Myles, S., Prüfer, K., & Hofreiter, M. (2007). Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Research, 35, e97.
  • Milne, I., Bayer, M., Cardle, L., & Shaw, P. (2010). Tablet—next generation sequence assembly visualization. Bioinformatics, 26, 401–402.
  • Nickerson, D. A., Tobe, V. O., & Taylor, S. L. (1997). PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Research, 25(14), 2745–2751.
  • Nijveen, H., Kaauwen, M. V., Esselink, D. G., Hoegen, B., & Vosman, B. (2013). QualitySNPng: A user-friendly SNP detection and visualization tool. Nucleic Acids Research, 30, 1141–1151.
  • Ning, Z., Caccamo, M., & Mullikin, J. C. (2005). ssahaSNP - a polymorphism detection tool on a whole genome scale [Paper presentation]. IEEE Computational Systems Bioinformatics Conference Workshops (pp. 251–252).
  • Ossowski, S., Schneeberger, K., & Clark, R. M. (2008). Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Research, 18, 2014–2033.
  • Pers, T. H., Timshel, P., & Hirschhom, J. N. (2015). SNPsnap: a Web-based tool for identification and annotation of matched SNPs. Bioinformatics, 31, 418–430.
  • Peterlongo, P., Schnel, N., Pisanti, N., Sagot, M. F., & Lacroix, V. (2010). Identifying SNPs without a reference genome by comparing raw reads. In String Processing and Information Retrieval: 17th International Symposium, SPIRE. Proceedings (pp. 147–158). Springer.
  • Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575.
  • Ratan, A., Zhang, Y., Hayes, V. M., Schuster, S. C., & Miller, W. (2010). Calling SNPs without a reference sequence. BMC Bioinformatics, 11(1), 1–3.
  • Rengasamy, V., & Madduri, K. (2016). SPRITE: A fast parallel SNP detection pipeline. In: J. Kunkel, P. Balaji, & J. Dongarra (Eds.), High performance computing. ISC High Performance 2016. Lecture Notes in Computer Science (p. 967). Springer.
  • Rimmer, A., Phan, H., & Mathieson, I. (2014). Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nature Genetics, 46, 912–918.
  • Riva, A. (2012). Large-scale computational identification of regulatory SNPs with rSNP-MAPPER. BMC Genomics, 13, S7.
  • Satya, R. V., Zavaljevski, N., & Reifman, J. (2011). SNIT: SNP identification for strain typing. Code for Biology and Medicine, 6, 14–25.
  • Schirmer, M., D’Amore, R., Ijaz, U. Z., Hall, N., & Quince, C. (2016). Illumina error profiles: Resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics, 17(1), 125.
  • Schmitt, A. O., Assmus, J., Bortfeldt, R. H., & Brockmann, G. A. (2010). CandiSNPer: A web tool for the identification of candidate SNPs for causal variants. Bioinformatics, 26, 969–970.
  • Semalaiyappan, J., Selvanayagam, S., Rathore, A., Gupta, S. K., Chakraborty, A., Gujjula, K. R., Haktan, S., Viswanath, A., Malipatil, R., Shah, P., & Govindaraj, M. (2023). Development of a new AgriSeq 4K mid-density SNP genotyping panel and its utility in pearl millet breeding. Frontiers in Plant Science, 13, 5443.
  • Senthilvel, S., Ghosh, A., Shaik, M., Shaw, R. K., & Bagali, P. G. (2019). Development and validation of an SNP genotyping array and construction of a high-density linkage map in castor. Scientific Reports, 9(1), 3003.
  • Shen, Y., Wan, Z., & Coarfa, C. (2010). A SNP discovery method to assess variant allele probability from next-generation re-sequencing data. Genome Research, 20, 273–280.
  • Singh, R., Bollina, V., Higgins, E. E., Clarke, W. E., Eynck, C., Sidebottom, C., Gugel, R., Snowdon, R., & Parkin, I. A. (2015). Single-nucleotide polymorphism identification and genotyping in Camelina sativa. Molecular Breeding, 35(1), 35.
  • Su, J., Li, L., Zhang, C., Wang, C., Gu, L., Wang, H., Wei, H., Liu, Q., Huang, L., & Yu, S. (2018). Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theoretical and Applied Genetics, 131(6), 1299–1314.
  • Sun, X., Liu, D., Zhang, X., Li, W., Liu, H., Hong, W., Jiang, C., Guan, N., Ma, C., Zeng, H., & Xu, C. (2013). SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 8(3), e58700.
  • Tang, J., Leunissen, J. A. M., & Voorrips, R. (2008). HaploSNPer: A web-based allele and SNP detection tool. BMC Genetics, 9, 23.
  • Tang, J., Vosman, B., & Voorrips, R. E. (2006). QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinformatics, 7, 438–447.
  • Terada, A., Ryo, Y., Koji, T., & Jun, S. (2016). LAMPLINK: Detection of statistically significant SNP combinations from GWAS data. Bioinformatics, 32, 3513–3515.
  • Truong, H. T., Ramos, A. M., Yalcin, F., de Ruiter, M., van der Poel, H. J., Huvenaars, K. H., Hogers, R. C., van Enckevort, L. J., Janssen, A., van Orsouw, N. J., & van Eijk, M. J. (2012). Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One, 7(5), e37565.
  • Turner, S. D., Nagraj, V. P., Scholz, M., Jessa, S., Acevedo, C., Ge, J., Woerner, A. E., & Budowle, B. (2022). Skater: An R package for SNP-based kinship analysis, testing, and evaluation. F1000Research. 11.
  • Van Orsouw, N. J., Hogers, R. C. J., & Janson, A. (2007). Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One, 2, e1172.
  • Wang, X., Zheng, Z., Cai, Y., Chen, T., Li, C., Fu, W., & Jiang, Y. (2017). CNVcaller: Highly efficient and widely applicable software for detecting copy number variations in large populations. GigaScience, 6(12), gix115.
  • Weckx, S., Favero, J. D., & Rademakers, R. R. (2005). novoSNP, a novel computational tool for sequence variation discovery. Genome Research, 15, 436–442.
  • Wei, Z., Wang, W., Hu, P., Lyon, G. J., & Hakonarson, H. (2011). SNVer: A statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data. Nucleic Acids Research, 39(19), e132. https://doi.org/10.1093/nar/gkr599
  • Wu, X., Islam, A. F., Limpot, N., Mackasmiel, L., Mierzwa, J., Cortés, A. J., & Blair, M. W. (2020). Genome-wide Snp identification and association mapping for seed mineral concentration in mung bean (Vigna radiata L.). Frontiers in Genetics, 11, 656.
  • Zhang, J., Wheeler, D. A., Yakub, I., Wei, S., Sood, R., Rowe, W., Liu, P. P., Gibbs, R. A., & Buetow, K. H. (2005). SNPdetector: A software tool for sensitive and accurate SNP detection. PLoS Computational Biology, 1(5), e53. https://doi.org/10.1371/journal.pcbi.0010053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.