235
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Developing a comprehensive solution aimed to disrupt LARS1/RagD protein-protein interaction

, , , , &
Pages 747-758 | Received 27 Dec 2022, Accepted 18 Mar 2023, Published online: 30 Mar 2023

References

  • Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chemistry & Biology, 21(9), 1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001
  • Arnautova, Y. A., Abagyan, R., & Totrov, M. (2018). Protein-RNA docking using ICM. Journal of Chemical Theory and Computation, 14(9), 4971–4984. https://doi.org/10.1021/acs.jctc.8b00293
  • Bar-Peled, L., Schweitzer, L. D., Zoncu, R., & Sabatini, D. M. (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208. https://doi.org/10.1016/j.cell.2012.07.032
  • Bottegoni, G., Kufareva, I., Totrov, M., & Abagyan, R. (2008). A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). Journal of Computer-Aided Molecular Design, 22(5), 311–325. https://doi.org/10.1007/s10822-008-9188-5
  • Boyarshin, K. S., Priss, A. E., Rayevskiy, A. V., Ilchenko, M. M., Dubey, I. Y., Kriklivyi, I. A., Yaremchuk, A. D., & Tukalo, M. A. (2017). A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: Catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase. Journal of Biomolecular Structure and Dynamics, 35(3), 669–682. https://doi.org/10.1080/07391102.2016.1155171
  • Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Gilson, M. K., Gohlke, H., Goetz, A.W., Greene, D., Harris, R., Homeyer, N., Izadi, S., Kovalenko, A., Kurtzman, T., Lee, T. S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Mermelstein, D. J., Merz, K. M., Miao, Y., Monard, G., Nguyen, C., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, D. R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C. L., Smith, J., Salomon-Ferrer, R., Swails, J., Walker, R. C., Wang, J., Wei, H., Wolf, R. M., Wu, X., Xiao, L., York, D. M. & Kollman, P. A. (2018). AMBER 2018. ambermd.org/doc12/Amber18.pdf.
  • Chan, P. P., & Lowe, T. M. (2016). GtRNAdb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Research, 44(D1), D184–D189. p. https://doi.org/10.1093/nar/gkv1309
  • Consortium, R. (2021). RNAcentral 2021: Secondary structure integration, improved sequence search and new member databases. Nucleic Acids Research, 49(D1), D212–D220. p.
  • Consortium, U. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1)), D480–D489.
  • Garcia, A. A., Rayevski, A., Andrade-Jorge, E., Trujillo-Ferrara, J. G. (2018). Structural and biological overview of Boron-containing amino acids in the medicinal chemistry field. Current Medicinal Chemistry.
  • Grabiner, B. C., Nardi, V., Birsoy, K., Possemato, R., Shen, K., Sinha, S., Jordan, A., Beck, A. H., & Sabatini, D. M. (2014). A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discovery, 4(5), 554–563. https://doi.org/10.1158/2159-8290.CD-13-0929
  • Gudzera, O. I., Golub, A. G., Bdzhola, V. G., Volynets, G. P., Lukashov, S. S., Kovalenko, O. P., Kriklivyi, I. A., Yaremchuk, A. D., Starosyla, S. A., Yarmoluk, S. M., & Tukalo, M. A. (2016). Discovery of potent anti-tuberculosis agents targeting leucyl-tRNA synthetase. Bioorganic and Medicinal Chemistry, 24(5), 1023–1031. https://doi.org/10.1016/j.bmc.2016.01.028
  • Han, J. M., Jeong, S. J., Park, M. C., Kim, G., Kwon, N. H., Kim, H. K., Ha, S. H., Ryu, S. H., & Kim, S. (2012). Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell, 149(2), 410–424. https://doi.org/10.1016/j.cell.2012.02.044
  • Hardt, M., Chantaravisoot, N., & Tamanoi, F. (2011). Activating mutations of TOR (target of rapamycin). Genes to Cells, 16(2), 141–151. https://doi.org/10.1111/j.1365-2443.2010.01482.x
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ilchenko, M. M., Rybak, M. Y., Rayevsky, A. V., Kovalenko, O. P., Dubey, I. Y., & Tukalo, M. A. (2019). Substrate-assisted mechanism of catalytic hydrolysis of misaminoacylated tRNA required for protein synthesis fidelity. The Biochemical Journal, 476(4), 719–732.
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kalvari, I., Nawrocki, E. P., Ontiveros-Palacios, N., Argasinska, J., Lamkiewicz, K., Marz, M., Griffiths-Jones, S., Toffano-Nioche, C., Gautheret, D., Weinberg, Z., Rivas, E., Eddy, S. R., Finn, R. D., Bateman, A., & Petrov, A. I. (2021). Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 49(D1), D192–D200. https://doi.org/10.1093/nar/gkaa1047
  • Kim, J. H., Jung, K., Lee, C., Song, D., Kim, K., Yoo, H. C., Park, S. J., Kang, J. S., Lee, K.-R., Kim, S., Han, J. M., & Han, G. (2021). Structure-based modification of pyrazolone derivatives to inhibit mTORC1 by targeting the leucyl-tRNA synthetase-RagD interaction. Bioorganic Chemistry. 112, 104907. https://doi.org/10.1016/j.bioorg.2021.104907
  • Kim, J. H., Lee, C., Lee, M., Wang, H., Kim, K., Park, S. J., Yoon, I., Jang, J., Zhao, H., Kim, H. K., Kwon, N. H., Jeong, S. J., Yoo, H. C., Kim, J. H., Yang, J. S., Lee, M. Y., Lee, C. W., Yun, J., Oh, S. J., … Kim, S. (2017). Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nature Communications, 8(1), 732. https://doi.org/10.1038/s41467-017-00785-0
  • Kim, S., Yoon, I., Son, J., Park, J., Kim, K., Lee, J.-H., Park, S.-Y., Kang, B. S., Han, J. M., Hwang, K. Y., & Kim, S. (2021). Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for mTORC1 activation. Cell Reports, 35(4), 109031. https://doi.org/10.1016/j.celrep.2021.109031
  • Kufareva, I., Ilatovskiy, A. V., & Abagyan, R. (2012). Pocketome: An encyclopedia of small-molecule binding sites in 4D. Nucleic Acids Research, 40(D1), D535–D540. https://doi.org/10.1093/nar/gkr825
  • Lee M., Kim J. H., Yoon I., Lee C., Fallahi Sichani M., Kang J. S., Kang J., Guo M., Lee K. Y., Han G., Kim S., Han J. M. (2018). Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Proc Natl Acad Sci U S A, 115(23), E5279–E5288.
  • Lehman, E., & Abraham, R. T. (2020). A sugary input to leucine sensing. Science, 367(6474), 146–147. https://doi.org/10.1126/science.aba2335
  • Li, K., Luo, H., Huang, L., Luo, H., & Zhu, X. (2020). Microsatellite instability: A review of what the oncologist should know. Cancer Cell International, 20(1), 16. https://doi.org/10.1186/s12935-019-1091-8
  • Liu, R.-J., Long, T., Li, H., Zhao, J., Li, J., Wang, M., Palencia, A., Lin, J., Cusack, S., & Wang, E.-D. (2020). Molecular basis of the multifaceted functions of human leucyl-tRNA synthetase in protein synthesis and beyond. Nucleic Acids Research, 48(9), 4946–4959. https://doi.org/10.1093/nar/gkaa189
  • Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268. https://doi.org/10.1080/00268978400101201
  • Páll, S., et al. (2015). Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In Lecture notes in computer science (pp. 3–27). Springer International Publishing.
  • Park, Y.-L., Kim, H.-P., Cho, Y.-W., Min, D.-W., Cheon, S.-K., Lim, Y. J., Song, S.-H., Kim, S. J., Han, S.-W., Park, K. J., & Kim, T.-Y. (2019). Activation of WNT/β-catenin signaling results in resistance to a dual PI3K/mTOR inhibitor in colorectal cancer cells harboring PIK3CA mutations. International Journal of Cancer, 144(2), 389–401. https://doi.org/10.1002/ijc.31662
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Rayevsky, A. V., Sharifi, M., & Tukalo, M. A. (2017). Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation. Journal of Molecular Graphics and Modelling, 76, 289–295. https://doi.org/10.1016/j.jmgm.2017.06.022
  • Rayevsky, A., Sharifi, M., & Tukalo, M. (2018). A molecular dynamics simulation study of amino acid selectivity of LeuRS editing domain from Thermus thermophilus. Journal of Molecular Graphics and Modelling, 84, 74–81. https://doi.org/10.1016/j.jmgm.2018.06.015
  • Rayevsky, A., Sharifi, M., Demianenko, E., Volochnyuk, D., & Tukalo, M. (2021). Effect of charge distribution in a modified tRNA substrate on pre-reaction protein-tRNA complex geometry. ACS Omega, 6(6), 4227–4235. https://doi.org/10.1021/acsomega.0c05143
  • Rayevsky, O. V., & Tukalo, M. A. (2018). Computational approaches for parameterization of aminoacyl-tRNA synthetase substrates. Biopolymers and Cell, 34(3), 239–248. https://doi.org/10.7124/bc.00097E
  • Rybak, M. Y., Rayevsky, A. V., Gudzera, O. I., & Tukalo, M. A. (2019). Stereospecificity control in aminoacyl-tRNA-synthetases: New evidence of d-amino acids activation and editing. Nucleic Acids Research, 47(18), 9777–9788. https://doi.org/10.1093/nar/gkz756
  • Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., & Sabatini, D. M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882), 1496–1501. https://doi.org/10.1126/science.1157535
  • Sato, T., Nakashima, A., Guo, L., Coffman, K., & Tamanoi, F. (2010). Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene, 29(18), 2746–2752. https://doi.org/10.1038/onc.2010.28
  • Suryawan, A., Rudar, M., Fiorotto, M. L., & Davis, T. A. (2020). Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. Journal of Applied Physiology (Bethesda, Md. : 1985), 128(2), 286–295.
  • Tang, J., Xu, Z., Huang, L., Luo, H., & Zhu, X. (2019). Transcriptional regulation in model organisms: Recent progress and clinical implications. Open Biology, 9(11), 190183. https://doi.org/10.1098/rsob.190183
  • Tekpinar, M., Neron, B., & Delarue, M. (2021). Extracting dynamical correlations and identifying key residues for allosteric communication in proteins by correlationplus. Journal of Chemical Information and Modeling, 61(10), 4832–4838. https://doi.org/10.1021/acs.jcim.1c00742
  • Wagle, N., Grabiner, B. C., Van Allen, E. M., Hodis, E., Jacobus, S., Supko, J. G., Stewart, M., Choueiri, T. K., Gandhi, L., Cleary, J. M., Elfiky, A. A., Taplin, M. E., Stack, E. C., Signoretti, S., Loda, M., Shapiro, G. I., Sabatini, D. M., Lander, E. S., Gabriel, S. B., … Rosenberg, J. E. (2014). Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discovery, 4(5), 546–553. https://doi.org/10.1158/2159-8290.CD-13-0353
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Yoon, S., Zuo, D., Kim, J. H., Yoon, I., Ann, J., Kim, S.-E., Cho, D., Kim, W. K., Lee, S., Lee, J., Kim, S., & Lee, J. (2018). Discovery of novel leucyladenylate sulfamate surrogates as leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Bioorganic and Medicinal Chemistry, 26(14), 4073–4079. https://doi.org/10.1016/j.bmc.2018.06.034
  • Zhang, Y., Wang, J., & Xiao, Y. (2022). 3dRNA: 3D structure prediction from linear to circular RNAs. Journal of Molecular Biology, 434(11), 167452.
  • Zhao, Y., Cholewa, J., Shang, H., Yang, Y., Ding, X., Wang, Q., Su, Q., Zanchi, N. E., & Xia, Z. (2021). Advances in the role of leucine-sensing in the regulation of protein synthesis in aging skeletal muscle. Frontiers in Cell and Developmental Biology, 9, 646482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.