338
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Anti-inflammatory potential of selective small compounds by targeting TNF-α & NF-kB signaling: a comprehensive molecular docking and simulation study

, , , , , & ORCID Icon show all
Pages 13815-13828 | Received 15 Oct 2022, Accepted 11 Feb 2023, Published online: 04 Apr 2023

References

  • Agnihotri, P., Monu, Ramani, S., Chakraborty, D., Saquib, M., & Biswas, S. (2021). Differential metabolome in rheumatoid arthritis: A brief perspective. Current Rheumatology Reports 23(6), 1-12. https://doi.org/10.1007/s11926-021-00989-w
  • Ali, W., & Ali Kh, M. W. (2013). Catecholestrogens in Rheumatoid Arthritis (RA): Hidden role. In Innovative rheumatology. InTech. https://doi.org/10.5772/51794
  • Almutairi, K., Nossent, J., Preen, D., Keen, H., & Inderjeeth, C. (2021). The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatology International, 41(5), 863–877. https://doi.org/10.1007/s00296-020-04731-0
  • Bindu, S., Mazumder, S., & Bandyopadhyay, U. (2020). Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochemical Pharmacology, 180, 114147. https://doi.org/10.1016/J.BCP.2020.114147
  • Bowers, K. J., Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006a). Scalable algorithms for molecular dynamics simulations on commodity clusters. SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. http://130.203.136.95/viewdoc/summary?doi=10.1.1.98.2121
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006b). Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06. https://doi.org/10.1145/1188455.1188544
  • Bruusgaard, A., & Andersen, R. B. (1975). Effect of an intravenously administered bile acid (chenodeoxycholic acid) on rheumatoid arthritis. Scandinavian Journal of Rheumatology, 4(3), 169–173. https://doi.org/10.3109/03009747509165448
  • Capellino, S., Straub, R. H., & Cutolo, M. (2014). Aromatase and regulation of the estrogen-to-androgen ratio in synovial tissue inflammation: Common pathway in both sexes. Annals of the New York Academy of Sciences, 1317(1), 24–31. https://doi.org/10.1111/nyas.12398
  • Chen, S., Feng, Z., Wang, Y., Ma, S., Hu, Z., Yang, P., Chai, Y., & Xie, X. (2017). Discovery of novel ligands for TNF-$α$and TNF Receptor-1 through structure-based virtual screening and biological assay. Journal of Chemical Information and Modeling, 57(5), 1101–1111. https://doi.org/10.1021/acs.jcim.6b00672
  • Chiang, J. Y. L. (2013). Bile acid metabolism and signaling. Comprehensive Physiology, 3(3), 1191–1212. https://doi.org/10.1002/cphy.c120023
  • Coras, R., Murillo-Saich, J. D., & Guma, M. (2020). Circulating pro- and anti-inflammatory metabolites and its potential role in rheumatoid arthritis pathogenesis. Cells, 9(4), 827. https://doi.org/10.3390/cells9040827
  • Donohoe, D. R., & Bultman, S. J. (2012). Metaboloepigenetics: Interrelationships between energy metabolism and epigenetic control of gene expression. Journal of Cellular Physiology, 227(9), 3169–3177. https://doi.org/10.1002/jcp.24054
  • Dubey, R. K., Tyurina, Y. Y., Tyurin, V. A., Gillespie, D. G., Branch, R. A., Jackson, E. K., & Kagan, V. E. (1999). Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth. Circulation Research, 84(2), 229–239. https://doi.org/10.1161/01.RES.84.2.229
  • Fernandez, S. V., Russo, I. H., & Russo, J. (2006). Estradiol and its metabolites 4-hydroxyestradiol and 2-OHE2 induce mutations in human breast epithelial cells. International Journal of Cancer, 118(8), 1862–1868. https://doi.org/10.1002/ijc.21590
  • Gao, Y. D., & Huang, J. F. (2011). An extension strategy of Discovery Studio 2.0 for non-bonded interaction energy automatic calculation at the residue level. Dong Wu Xue Yan Jiu = Zoological Research, 32(3), 262–266. https://doi.org/10.3724/SP.J.1141.2011.03262
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Guma, M., Tiziani, S., & Firestein, G. S. (2016). Metabolomics in rheumatic diseases: Desperately seeking biomarkers. Nature Reviews. Rheumatology, 12(5), 269–281. https://doi.org/10.1038/NRRHEUM.2016.1
  • Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N. J., & Xu, J. (2018). Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Research, 6(1), 1-14. https://doi.org/10.1038/s41413-018-0016-9
  • Halim, S. A., Sikandari, A. G., Khan, A., Wadood, A., Fatmi, M. Q., Csuk, R., & Al-Harrasi, A. (2021). Structure-based virtual screening of tumor necrosis factor-$α$inhibitors by cheminformatics approaches and bio-molecular simulation. Biomolecules, 11(2), 329. https://doi.org/10.3390/biom11020329
  • He, M. M., Smith, A. S., Oslob, J. D., Flanagan, W. M., Braisted, A. C., Whitty, A., Cancilla, M. T., Wang, J., Lugovskoy, A. A., Yoburn, J. C., Fung, A. D., Farrington, G., Eldredge, J. K., Day, E. S., Cruz, L. A., Cachero, T. G., Miller, S. K., Friedman, J. E., Choong, I. C., & Cunningham, B. C. (2005a). Medicine: Small-molecule inhibition of TNF-α. Science (New York, N.Y.), 310(5750), 1022–1025. https://doi.org/10.1126/science.1116304
  • He, M. M., Smith, A., S., Oslob, J. D., Flanagan, W. M., Braisted, A. C., Whitty, A., Cancilla, M. T., Wang, J., Lugovskoy, A. A., Yoburn, J. C., Fung, A. D., Farrington, G., Eldredge, J. K., Day, E. S., Cruz, L. A., Cachero, T. G., Miller, S. K., Friedman, J. E., Choong, I. C., & Cunningham, B. C. (2005b). Small-molecule inhibition of TNF-alpha. Science (New York, N.Y.), 310(5750), 1022–1025. https://doi.org/10.1126/SCIENCE.1116304
  • Hunter, N. H., Bakula, B. C., & Bruce, C. D. (2018). Molecular dynamics simulations of apo and holo forms of fatty acid binding protein 5 and cellular retinoic acid binding protein II reveal highly mobile protein, retinoic acid ligand, and water molecules. Journal of Biomolecular Structure & Dynamics, 36(7), 1893–1907. https://doi.org/10.1080/07391102.2017.1337591
  • Huxford, T., Huang, D. B., Malek, S., & Ghosh, G. (1998). The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell, 95(6), 759–770. https://doi.org/10.1016/S0092-8674(00)81699-2
  • Kaloni, D., Chakraborty, D., Tiwari, A., & Biswas, S. (2020). In silico studies on the phytochemical components of Murraya koenigii targeting TNF-α in rheumatoid arthritis. Journal of Herbal Medicine, 24, 100396. https://doi.org/10.1016/j.hermed.2020.100396
  • Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in inflammatory disease. International Journal of Molecular Sciences, 20(23), 6008. https://doi.org/10.3390/ijms20236008
  • Kiametis, A. S., Silva, M. A., Romeiro, L. A. S., Martins, J. B. L., & Gargano, R. (2017). Potential acetylcholinesterase inhibitors: Molecular docking, molecular dynamics, and in silico prediction. Journal of Molecular Modeling, 23(2), 1-10. https://doi.org/10.1007/s00894-017-3228-9
  • Lawrence, T. (2009). The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology, 1(6), a001651. https://doi.org/10.1101/CSHPERSPECT.A001651
  • Li, P., Zheng, Y., & Chen, X. (2017). Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics. Frontiers in Pharmacology, 8(JUL), 460. https://doi.org/10.3389/fphar.2017.00460
  • Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023–17023. https://doi.org/10.1038/sigtrans.2017.23
  • Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., & Jiang, H. (2010). PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research, 38(Web Server issue), W609–W614. https://doi.org/10.1093/nar/gkq300
  • Lohning, A. E., Levonis, S. M., Williams-Noonan, B., & Schweiker, S. S. (2017). A practical guide to molecular docking and homology modelling for medicinal chemists. Current Topics in Medicinal Chemistry, 17(18), 2023-2040. https://doi.org/10.2174/1568026617666170130110827
  • Martyna, G. J., Hughes, A., & Tuckerman, M. E. (1999). Molecular dynamics algorithms for path integrals at constant pressure. The Journal of Chemical Physics, 110(7), 3275–3290. https://doi.org/10.1063/1.478193
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Miller, S. C., Huang, R., Sakamuru, S., Shukla, S. J., Attene-Ramos, M. S., Shinn, P., Van Leer, D., Leister, W., Austin, C. P., & Xia, M. (2010). Identification of known drugs that act as inhibitors of NF-κB signaling and their mechanism of action. Biochemical Pharmacology, 79(9), 1272–1280. https://doi.org/10.1016/j.bcp.2009.12.021
  • Núñez, S., Venhorst, J., & Kruse, C. G. (2012). Target-drug interactions: First principles and their application to drug discovery. Drug Discovery Today, 17(1–2), 10–22. https://doi.org/10.1016/j.drudis.2011.06.013
  • O’Connell, J., Porter, J., Kroeplien, B., Norman, T., Rapecki, S., Davis, R., McMillan, D., Arakaki, T., Burgin, A., Fox, D., Ceska, T., Lecomte, F., Maloney, A., Vugler, A., Carrington, B., Cossins, B. P., Bourne, T., & Lawson, A. (2019). Small molecules that inhibit TNF signalling by stabilising an asymmetric form of the trimer. Nature Communications, 10(1), 1–12. https://doi.org/10.1038/s41467-019-13616-1
  • Parameswaran, N., & Patial, S. (2010). Tumor necrosis factor-a signaling in macrophages. Critical Reviews in Eukaryotic Gene Expression, 20(2), 87–103. https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/JCC.20084
  • Popa, C., Netea, M. G., Van Riel, P. L. C. M., Van Der Meer, J. W. M., & Stalenhoef, A. F. H. (2007). The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. Journal of Lipid Research, 48(4), 751–762. https://doi.org/10.1194/jlr.R600021-JLR200
  • Ran, X., & Gestwicki, J. E. (2018). Inhibitors of protein–protein interactions (PPIs): An analysis of scaffold choices and buried surface area. In. Current Opinion in Chemical Biology, 44, 75–86. https://doi.org/10.1016/j.cbpa.2018.06.004
  • Rigsby, R. E., & Parker, A. B. (2016). Using the PyMOL application to reinforce visual understanding of protein structure. Biochemistry and Molecular Biology Education: A Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 44(5), 433–437. https://doi.org/10.1002/BMB.20966
  • Samavat, H., & Kurzer, M. S. (2015). Estrogen metabolism and breast cancer. Cancer Letters, 356(2 Pt A), 231–243. https://doi.org/10.1016/j.canlet.2014.04.018
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/CT900587B
  • Smolen, J. S., Aletaha, D., Barton, A., Burmester, G. R., Emery, P., Firestein, G. S., Kavanaugh, A., McInnes, I. B., Solomon, D. H., Strand, V., & Yamamoto, K. (2018). Rheumatoid arthritis. Nature Reviews Disease Primers, 4(1), 1-23. https://doi.org/10.1038/nrdp.2018.1
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Toukmaji, A. Y., & Board, J. A. (1996). Ewald summation techniques in perspective: A survey. Computer Physics Communications, 95(2–3), 73–92. https://doi.org/10.1016/0010-4655(96)00016-1
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Tuckerman, M., Berne, B. J., & Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics, 97(3), 1990–2001. https://doi.org/10.1063/1.463137
  • Vilar, S., Sobarzo-Sanchez, E., Santana, L., & Uriarte, E. (2017). Molecular docking and drug discovery in β-adrenergic receptors. Current Medicinal Chemistry, 24(39), 4340-4359. https://doi.org/10.2174/0929867324666170724101448
  • Wang, J. H., Byun, J., & Pennathur, S. (2010). Analytical approaches to metabolomics and applications to systems biology. Seminars in Nephrology, 30(5), 500–511. https://doi.org/10.1016/j.semnephrol.2010.07.007
  • Wang, N., Zhao, G., Zhang, Y., Wang, X., Zhao, L., Xu, P., & Shou, D. (2017). A network pharmacology approach to determine the active components and potential targets of Curculigo orchioides in the treatment of osteoporosis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 23, 5113–5122. https://doi.org/10.12659/MSM.904264
  • Wang, Y., Hu, B., Peng, Y., Xiong, X., Jing, W., Wang, J., & Gao, H. (2019). In silico exploration of the molecular mechanism of cassane diterpenoids on anti-inflammatory and immunomodulatory activity. Journal of Chemical Information and Modeling, 59(5), 2309–2323. https://doi.org/10.1021/ACS.JCIM.8B00862
  • Wang, Z., Chandrasena, E. R., Yuan, Y., Peng, K. W., Van Breemen, R. B., Thatcher, G. R. J., & Bolton, J. L. (2010). Redox cycling of catechol estrogens generating apurinic/apyrimidinic sites and 8-oxo-deoxyguanosine via reactive oxygen species differentiates equine and human estrogens. Chemical Research in Toxicology, 23(8), 1365–1373. https://doi.org/10.1021/tx1001282
  • Yan, Z. W., Dong, J., Qin, C. H., Zhao, C. Y., Miao, L. Y., & He, C. Y. (2015). Therapeutic effect of chenodeoxycholic acid in an experimental rabbit model of osteoarthritis. Mediators of Inflammation, 2015, 780149. https://doi.org/10.1155/2015/780149
  • Ylilauri, M., & Pentikäinen, O. T. (2013). MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. Journal of Chemical Information and Modeling, 53(10), 2626–2633. https://doi.org/10.1021/CI4002475/SUPPL_FILE/CI4002475_SI_002.PDF
  • Yoon, N., Jang, A. K., Seo, Y., & Jung, B. H. (2021). Metabolomics in autoimmune diseases: Focus on rheumatoid arthritis, systemic lupus erythematous, and multiple sclerosis. Metabolites, 11(12), 812. https://doi.org/10.3390/metabo11120812
  • Zia, K., Ashraf, S., Jabeen, A., Saeed, M., Nur-e-Alam, M., Ahmed, S., Al-Rehaily, A. J., & Ul-Haq, Z. (2020). Identification of potential TNF-α inhibitors: From in silico to in vitro studies. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-77750-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.