361
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Integrated virtual screening and molecular dynamics simulation approaches revealed potential natural inhibitors for DNMT1 as therapeutic solution for triple negative breast cancer

, , , , , , , , & show all
Pages 1099-1109 | Received 25 Oct 2022, Accepted 28 Mar 2023, Published online: 06 Apr 2023

References

  • Adiyaman, R., & McGuffin, L. (2019). Methods for the refinement of protein structure 3D models. International Journal of Molecular Sciences, 20(9), 2301. https://doi.org/10.3390/ijms20092301
  • Agnihotry, S., Pathak, R.K., Singh, D.B., Tiwari, A. & Hussain, I. (2022). Protein structure prediction. In Bioinformatics (pp. 177–188). Elsevier.
  • Ahire, E.D., Sonawane, V.N., Surana, K.R. & Talele, G.S. (2021). Drug discovery, drug-likeness screening, and bioavailability: Development of drug-likeness rule for natural products. In Applied pharmaceutical practice and nutraceuticals (pp. 191–208). Apple Academic Press.
  • Ahmed, B., Ashfaq, U.A., ul Qamar, M.T. & Ahmad, M. (2014). Anti-cancer potential of phytochemicals against breast cancer: Molecular docking and simulation approach. Bangladesh Journal of Pharmacology, 9(4), 545–550.
  • Alamri, M.A., Mirza, M.U., Adeel, M.M., Ashfaq, U.A., Tahir ul Qamar, M., Shahid, F., Ahmad, S., Alatawi, E.A., Albalawi, G.M., Allemailem, K.S. & Almatroudi, A. (2022). Structural elucidation of rift valley fever virus L protein towards the discovery of its potential inhibitors. Pharmaceuticals, 15(6), 659. https://doi.org/10.3390/ph15060659
  • Alamri, M. A., Tahir Ul Qamar, M., Afzal, O., Alabbas, A. B., Riadi, Y., & Alqahtani, S. M. (2021a). Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. Journal of Molecular Liquids, 330, 115699. https://doi.org/10.1016/j.molliq.2021.115699
  • Alamri, M. A., Tahir Ul Qamar, M., Mirza, M. U., Alqahtani, S. M., Froeyen, M., & Chen, L.-L. (2020). Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. Journal of Pharmaceutical Analysis, 10(6), 546–559. https://doi.org/10.1016/j.jpha.2020.08.012
  • Alamri, M. A., Tahir Ul Qamar, M., Mirza, M. U., Bhadane, R., Alqahtani, S. M., Muneer, I., Froeyen, M., & Salo-Ahen, O. M. H. (2021b). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro. Journal of Biomolecular Structure & Dynamics, 39(13), 4936–4948. https://doi.org/10.1080/07391102.2020.1782768
  • Alves, D. R., da Rocha, M. N., de Sousa, D. S., Oliveira, I. C. M., Marinho, M. M., de Morais, S. M., & Marinho, E. S. (2021). Virtual screening of natural curcumins and related compounds against SARS-CoV-2. Journal of Computational Biophysics and Chemistry, 20(01), 53–70. https://doi.org/10.1142/S2737416521500046
  • Amin, S. A., Ghosh, K., Gayen, S., & Jha, T. (2021). Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors. Journal of Biomolecular Structure & Dynamics, 39(13), 4764–4773. https://doi.org/10.1080/07391102.2020.1780946
  • Anwar, F., Saleem, U., Ahmad, B., Ashraf, M., Rehman, A. U., Froeyen, M., Kee, L. Y., Abdullah, I., Mirza, M. U., & Ahmad, S. (2020). New naphthalene derivative for cost-effective AChE inhibitors for Alzheimer’s treatment: In silico identification, in vitro and in vivo validation. Computational Biology and Chemistry, 89, 107378. https://doi.org/10.1016/j.compbiolchem.2020.107378
  • Arif, R., Ahmad, S., Mustafa, G., Mahrosh, H. S., Ali, M., Tahir Ul Qamar, M., & Dar, H. R. (2021). Molecular docking and simulation studies of antidiabetic agents devised from hypoglycemic polypeptide-P of Momordica charantia. BioMed Research International, 2021, 1–15. https://doi.org/10.1155/2021/5561129
  • Assumpção, J.H.M., Takeda, A.A.S., Sforcin, J.M. & Rainho, C.A. (2020). Effects of propolis and phenolic acids on triple-negative breast cancer cell lines: Potential involvement of epigenetic mechanisms. Molecules, 25(6), 1289. https://doi.org/10.3390/molecules25061289
  • Baell, J. B., & Holloway, G. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E., & Gianni, L. (2016). Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nature Reviews. Clinical Oncology, 13(11), 674–690. https://doi.org/10.1038/nrclinonc.2016.66
  • Boda, K., Seidel, T., & Gasteiger, J.-a. (2007). Structure and reaction based evaluation of synthetic accessibility. Journal of Computer-Aided Molecular Design, 21(6), 311–325. https://doi.org/10.1007/s10822-006-9099-2
  • Boere, I., Lok, C., Poortmans, P., Koppert, L., Painter, R., vd Heuvel-Eibrink, M.M. & Amant, F. (2022). Breast cancer during pregnancy: Epidemiology, phenotypes, presentation during pregnancy and therapeutic modalities. Best Practice & Research Clinical Obstetrics & Gynaecology, 82, 46-59. https://doi.org/10.1016/j.bpobgyn.2022.05.001
  • Cai, C., Wang, S., Xu, Y., Zhang, W., Tang, K., Ouyang, Q., Lai, L., & Pei, J. (2020). Transfer learning for drug discovery. Journal of Medicinal Chemistry, 63(16), 8683–8694. https://doi.org/10.1021/acs.jmedchem.9b02147
  • Carey, L., Winer, E., Viale, G., Cameron, D., & Gianni, L. (2010). Triple-negative breast cancer: Disease entity or title of convenience? Nature Reviews. Clinical Oncology, 7(12), 683–692. https://doi.org/10.1038/nrclinonc.2010.154
  • Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Crowley, M.R.C.W., Walker, R.C., Zhang, W. & Merz, K.M. (2008). Amber 10. University of California.
  • Chen, H., Wu, J., Zhang, Z., Tang, Y., Li, X., Liu, S., Cao, S. & Li, X. (2018). Association between BRCA status and triple-negative breast cancer: A meta-analysis. Frontiers in Pharmacology, 9, 909.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Springer.
  • Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T.-C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001
  • Foulkes, W. D., Smith, I. E., & Reis-Filho, J. (2010). Triple-negative breast cancer. The New England Journal of Medicine, 363(20), 1938–1948. https://doi.org/10.1056/NEJMra1001389
  • Garinis, G. A., Patrinos, G. P., Spanakis, N. E., & Menounos, P. G. (2002). DNA hypermethylation: When tumour suppressor genes go silent. Human Genetics, 111(2), 115–127. https://doi.org/10.1007/s00439-002-0783-6
  • Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J. H., & Ferrin, T. E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science, 27(1), 14–25. https://doi.org/10.1002/pro.3235
  • Guedes, I. A., de Magalhães, C. S., & Dardenne, L. (2014). Receptor–ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/s12551-013-0130-2
  • Guterres, H., & Im, W. (2020). Improving protein-ligand docking results with high-throughput molecular dynamics simulations. Journal of Chemical Information and Modeling, 60(4), 2189–2198. https://doi.org/10.1021/acs.jcim.0c00057
  • Hasan, A. H., Hussen, N. H., Shakya, S., Jamalis, J., Pratama, M. R. F., Chander, S., Kharkwal, H., & Murugesan, S. (2022). In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Structural Chemistry, 33(5), 1645–1665. https://doi.org/10.1007/s11224-022-01996-y
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson − Boltzmann surface area method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Hu, Y., Ma, Z., He, Y., Liu, W., Su, Y., & Tang, Z. (2017). LncRNA-SNHG1 contributes to gastric cancer cell proliferation by regulating DNMT1. Biochemical and Biophysical Research Communications, 491(4), 926–931. https://doi.org/10.1016/j.bbrc.2017.07.137
  • Jurkowska, R. Z., Jurkowski, T. P., & Jeltsch A. (2011). Structure and function of mammalian DNA methyltransferases. Chembiochem, 12(2), 206–222. https://doi.org/10.1002/cbic.201000195
  • Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., & Berman, H. M. (2006). The RCSB PDB information portal for structural genomics. Nucleic Acids Research, 34(Database issue), D302–D305. https://doi.org/10.1093/nar/gkj120
  • Kouznetsova, V. L., Zhang, A., Tatineni, M., Miller, M. A., & Tsigelny, I. F. (2020). Potential COVID-19 papain-like protease PLpro inhibitors: Repurposing FDA-approved drugs. PeerJ, 8, e9965. https://doi.org/10.7717/peerj.9965
  • Liu, Y.-Y., Feng, X.-Y., Jia, W.-Q., Jing, Z., Xu, W.-R., & Cheng, X.-C. (2019). Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations. Computational Biology and Chemistry, 78, 190–204. https://doi.org/10.1016/j.compbiolchem.2018.12.002
  • Loo, S. K., Ab Hamid, S. S., Musa, M., & Wong, K. K. (2018). DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma. Pathology, Research and Practice, 214(1), 134–143. https://doi.org/10.1016/j.prp.2017.10.005
  • Loo, S. K., Ch’ng, E. S., Lawrie, C. H., Muruzabal, M. A., Gaafar, A., Pomposo, M. P., Husin, A., Md Salleh, M. S., Banham, A. H., Pedersen, L. M., Møller, M. B., Green, T. M., & Wong, K. K. (2017). DNMT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology, 49(7), 731–739. https://doi.org/10.1016/j.pathol.2017.08.009
  • Lu, Y., Chan, Y.T., Tan, H.Y., Li, S., Wang, N. & Feng, Y. (2020). Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Molecular Cancer, 19(1), 1–16.
  • Luo, D., Tong, J.-B., Zhang, X., Xiao, X.-C., & Bian, S. (2022). Computational strategies towards developing novel SARS-CoV-2 Mpro inhibitors against COVID-19. Journal of Molecular Structure, 1247, 131378. https://doi.org/10.1016/j.molstruc.2021.131378
  • Lyne, P. D. (2002). Structure-based virtual screening: An overview. Drug Discovery Today, 7(20), 1047–1055. https://doi.org/10.1016/s1359-6446(02)02483-2
  • Mahmud, S., Paul, G.K., Afroze, M., Islam, S., Gupt, S.B.R., Razu, M.H., Biswas, S., Zaman, S., Uddin, M.S., Khan, M. & Cacciola, N.A. (2021). Efficacy of phytochemicals derived from Avicennia officinalis for the management of COVID-19: A combined in silico and biochemical study. Molecules, 26(8), 2210. https://doi.org/10.3390/molecules26082210
  • Man, V. H., Wu, X., He, X., Xie, X.-Q., Brooks, B. R., & Wang, J. (2021). Determination of van der Waals parameters using a double exponential potential for nonbonded divalent metal cations in TIP3P solvent. Journal of Chemical Theory and Computation, 17(2), 1086–1097. https://doi.org/10.1021/acs.jctc.0c01267
  • Maurya, A. K., Mulpuru, V., & Mishra, N. (2020). Discovery of novel coumarin analogs against the α-glucosidase protein target of Diabetes mellitus: Pharmacophore-based QSAR, docking, and molecular dynamics simulation studies. ACS Omega, 5(50), 32234–32249. https://doi.org/10.1021/acsomega.0c03871
  • Michael, D., Bankoti, N., Biswas, A. & Sekar, K. (2021). Aspects of protein structure, function, and dynamics in rational drug designing. In Innovations and implementations of computer aided drug discovery strategies in rational drug design (pp. 35–57). Springer.
  • Milioli, H.H., Tishchenko, I., Riveros, C., Berretta, R. & Moscato, P. (2017). Basal-like breast cancer: Molecular profiles, clinical features and survival outcomes, BMC Medical Genomics, 10(1), 1–17.
  • Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23–38. https://doi.org/10.1038/npp.2012.112
  • Muhseen, Z. T., Hameed, A. R., Al-Hasani, H. M. H., Tahir Ul Qamar, M., & Li, G. (2020). Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. Journal of Molecular Liquids, 320, 114493. https://doi.org/10.1016/j.molliq.2020.114493
  • Mumtaz, A., Ashfaq, U. A., Ul Qamar, M. T., Anwar, F., Gulzar, F., Ali, M. A., Saari, N., & Pervez, M. T. (2017). MPD3: A useful medicinal plants database for drug designing. Natural Product Research, 31(11), 1228–1236. https://doi.org/10.1080/14786419.2016.1233409
  • Noor, F., Noor, A., Ishaq, A.R., Farzeen, I., Saleem, M.H., Ghaffar, K., Aslam, M.F., Aslam, S. & Chen, J.T. (2021). Recent advances in diagnostic and therapeutic approaches for breast cancer: A comprehensive review. Current Pharmaceutical Design, 27(20), 2344–2365. https://doi.org/10.2174/18734286MTE06NzEAx
  • Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3), 247–257. https://doi.org/10.1016/s0092-8674(00)81656-6
  • Omrani, M., Keshavarz, M., Nejad Ebrahimi, S., Mehrabi, M., McGaw, L.J., Ali Abdalla, M. & Mehrbod, P. (2021). Potential natural products against respiratory viruses: A perspective to develop anti-covid-19 medicines. Frontiers in Pharmacology, 11, 586993.
  • Pantsar, T., & Poso, A. (2018). Binding affinity via docking: Fact and fiction. Molecules, 23(8), 1899. https://doi.org/10.3390/molecules23081899
  • Pareja, F., Geyer, F.C., Marchiò, C., Burke, K.A., Weigelt, B. & Reis-Filho, J.S. (2016). Triple-negative breast cancer: The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer, 2(1), 1–11.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pogoda, K., Niwińska, A., Sarnowska, E., Nowakowska, D., Jagiełło-Gruszfeld, A., Siedlecki, J. & Nowecki, Z. (2020). Effects of BRCA germline mutations on triple-negative breast cancer prognosis. Journal of Oncology, 2020, 8545643.
  • Qadir, X. V., Han, C., Lu, D., Zhang, J., & Wu, T. (2014). miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. The American Journal of Pathology, 184(8), 2355–2364. https://doi.org/10.1016/j.ajpath.2014.05.004
  • Rasul, H.O., Aziz, B.K., Ghafour, D.D. & Kivrak, A. (2022). In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. Journal of Molecular Modeling, 28(1), 1–18.
  • Rehman, A., Ashfaq, U. A., Javed, M. R., Shahid, F., Noor, F., & Aslam, S. (2022). The screening of phytochemicals against NS5 polymerase to treat Zika virus infection: Integrated computational based approach. Combinatorial Chemistry & High Throughput Screening, 25(4), 738–751. https://doi.org/10.2174/1386207324666210712091920
  • Roe, D. R., & Cheatham III, T. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Salomon‐Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Shao, C., Westbrook, J. D., Lu, C., Bhikadiya, C., Peisach, E., Young, J. Y., Duarte, J. M., Lowe, R., Wang, S., Rose, Y., Feng, Z., & Burley, S. K. (2022). Simplified quality assessment for small-molecule ligands in the Protein Data Bank. Structure (London, England: 1993), 30(2), 252–262. e4. https://doi.org/10.1016/j.str.2021.10.003
  • Shoichet, B. K. (2004). Virtual screening of chemical libraries. Nature, 432(7019), 862–865. https://doi.org/10.1038/nature03197
  • Shultz, M. (2019). Two decades under the influence of the rule of five and the changing properties of approved oral drugs: Miniperspective. Journal of Medicinal Chemistry, 62(4), 1701–1714. https://doi.org/10.1021/acs.jmedchem.8b00686
  • Singh, D. B., & Pathak, R. K. (2020). Computational approaches in drug designing and their applications. In Experimental protocols in biotechnology (pp. 95–117). Springer.
  • Sivakumar, K. C., Haixiao, J., Naman, C. B., & Sajeevan, T. P. (2020). Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process. Drug Development Research, 81(6), 685–699. https://doi.org/10.1002/ddr.21673
  • Studio, D. J. A. (2008). Discovery studio.
  • Tahir ul Qamar, M., Maryam, A., Muneer, I., Xing, F., Ashfaq, U.A., Khan, F.A., Anwar, F., Geesi, M.H., Khalid, R.R., Rauf, S.A. & Siddiqi, A.R. (2019). Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Scientific Reports, 9(1), 1–16.
  • Tiwari, A., & Singh, S. (2022). Computational approaches in drug designing. In Bioinformatics (pp. 207–217). Elsevier.
  • Vanmeert, M., Razzokov, J., Mirza, M. U., Weeks, S. D., Schepers, G., Bogaerts, A., Rozenski, J., Froeyen, M., Herdewijn, P., Pinheiro, V. B., & Lescrinier, E. (2019). Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Research, 47(13), 7130–7142. https://doi.org/10.1093/nar/gkz551
  • Williams-Noonan, B. J., Yuriev, E., & Chalmers, D. (2018). Free energy methods in drug design: Prospects of “alchemical perturbation” in medicinal chemistry: Miniperspective. Journal of Medicinal Chemistry, 61(3), 638–649. https://doi.org/10.1021/acs.jmedchem.7b00681
  • Wong, K. K. (2021). DNMT1: A key drug target in triple-negative breast cancer. In Seminars in cancer biology. Elsevier. https://doi.org/10.1016/j.semcancer.2020.05.010
  • Xu, T.-H., et al. (2020). Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature, 586(7827), 151–155.
  • Yanagisawa, Y., Ito, E., Yuasa, Y., & Maruyama, K. (2002). The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochimica et Biophysica Acta, 1577(3), 457–465. https://doi.org/10.1016/s0167-4781(02)00482-7
  • Yao, H., He, G., Yan, S., Chen, C., Song, L., Rosol, T. J., & Deng, X. (2017). Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget, 8(1), 1913–1924. https://doi.org/10.18632/oncotarget.12284
  • Yuan, S., Chan, H. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), e1298.
  • Zhang, W., & Xu, J. (2017). DNA methyltransferases and their roles in tumorigenesis. Biomarker Research, 5(1), 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.