316
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Design and synthesis of 2-amino-4,6-diarylpyrimidine derivatives as potent α-glucosidase and α-amylase inhibitors: structure–activity relationship, in vitro, QSAR, molecular docking, MD simulations and drug-likeness studies

, , , , , , , , , & show all
Pages 244-260 | Received 27 Jan 2023, Accepted 10 Mar 2023, Published online: 25 Apr 2023

References

  • Adeniji, S. E., Uba, S., & Uzairu, A. (2018). Theoretical modeling and molecular docking simulation for investigating and evaluating some active compounds as potent anti-tubercular agents against MTB CYP121 receptor. Future Journal of Pharmaceutical Sciences, 4(2), 284–295. https://doi.org/10.1016/j.fjps.2018.10.003
  • Al-Ghulikah, H. A., Mughal, E. U., Elkaeed, E. B., Naeem, N., Nazir, Y., Alzahrani, A. Y. A., Sadiq, A., & Shah, S. W. A. (2023). Discovery of chalcone derivatives as potential α-glucosidase and cholinesterase inhibitors: Effect of hyperglycemia in paving a path to dementia. Journal of Molecular Structure, 1275, 134658. https://doi.org/10.1016/j.molstruc.2022.134658
  • Al-Nakeeb, M. R., & Omar, T. N. (2019). Synthesis, characterization and preliminary study of the anti-inflammatory activity of new pyrazoline containing ibuprofen derivatives. Iraqi Journal of Pharmaceutical Sciences (P-ISSN: 1683-3597, E-ISSN: 2521-3512), 28(1), 131–137.
  • Alam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P., & Gilani, S. J. (2010). Antihypertensive activity of newer 1, 4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation. European Journal of Medicinal Chemistry, 45(11), 5113–5119. https://doi.org/10.1016/j.ejmech.2010.08.022
  • Alanzy, A. L., Bakhotm, D. A., & Abdel-Rahman, R. M. (2020). Design, synthesis, chemistry and biological evaluation of some polyfunctional heterocyclic nitrogen systems—Overview. International Journal of Organic Chemistry, 10(02), 39–62. https://doi.org/10.4236/ijoc.2020.102003
  • Alshaye, N. A., Mughal, E. U., Elkaeed, E. B., Ashraf, Z., Kehili, S., Nazir, Y., Naeem, N., Abdul Majeed, N., & Sadiq, A. (2022). Synthesis and biological evaluation of substituted aurone derivatives as potential tyrosinase inhibitors: In vitro, kinetic, QSAR, docking and drug-likeness studies. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2022.2132296
  • Asano, N. (2003). Glycosidase inhibitors: Update and perspectives on practical use. Glycobiology, 13(10), 93R–104R. https://doi.org/10.1093/glycob/cwg090
  • Ashraf, J., Mughal, E. U., Sadiq, A., Naeem, N., Muhammad, S. A., Qousain, T., Zafar, M. N., Khan, B. A., & Anees, M. (2020). Design and synthesis of new flavonols as dual ɑ-amylase and ɑ-glucosidase inhibitors: Structure–activity relationship, drug-likeness, in vitro and in silico studies. Journal of Molecular Structure, 1218, 128458. https://doi.org/10.1016/j.molstruc.2020.128458
  • Balamurugan, C., Kamalakkannan, D., Suresh, R., Sakthinathan, S., Vanangamudi, G., & Thirunarayanan, G. (2016). Synthesis, structure-parameter correlation and antimicrobial evaluation of 1-(4-isobutylphenyl)-3-phenyl-2-propenone compounds. International Journal of Life Sciences & Research, 4, 7–22.
  • Barakat, A., Islam, M. S., Al-Majid, A. M., Ghabbour, H. A., Fun, H.-K., Javed, K., Imad, R., Yousuf, S., Choudhary, M. I., & Wadood, A. (2015). Synthesis, in vitro biological activities and in silico study of dihydropyrimidines derivatives. Bioorganic & Medicinal Chemistry, 23(20), 6740–6748. https://doi.org/10.1016/j.bmc.2015.09.001
  • Barakat, A., Islam, M. S., Al-Majid, A. M., Ghabbour, H. A., Yousuf, S., Ashraf, M., Shaikh, N. N., Choudhary, M. I., Khalil, R., & Ul-Haq, Z. (2016). Synthesis of pyrimidine-2, 4, 6-trione derivatives: Anti-oxidant, anti-cancer, α-glucosidase, β-glucuronidase inhibition and their molecular docking studies. Bioorganic Chemistry, 68, 72–79. https://doi.org/10.1016/j.bioorg.2016.07.009
  • Benderitter, P., de Araújo Júnior, J. X., Schmitt, M., & Bourguignon, J.-J. (2007). 2-Amino-6-iodo-4-tosyloxypyrimidine: A versatile key intermediate for regioselective functionalization of 2-aminopyrimidines in 4-and 6-positions. Tetrahedron, 63(50), 12465–12470. https://doi.org/10.1016/j.tet.2007.07.100
  • Butcher, R. J., Jasinski, J. P., Yathirajan, H., Narayana, B., & Veena, K. (2007). (E)-3-(4-Fluorophenyl)-1-(4-methylphenyl) prop-2-en-1-one. Acta Crystallographica Section E Structure Reports Online, 63(9), o3833–o3833. https://doi.org/10.1107/S160053680703989X
  • Butcher, R. J., Yathirajan, H., Anilkumar, H., Sarojini, B., & Narayana, B. (2006). 3-(3, 4-Dimethoxyphenyl)-1-(4-fluorophenyl) prop-2-en-1-one. Acta Crystallographica Section E Structure Reports Online, 62(4), o1633–o1635. https://doi.org/10.1107/S1600536806010609
  • Carbajal-Valenzuela, I. A., Apolonio–Hernandez, N. M., Gutierrez-Chavez, D. V., González-Arias, B., Jimenez-Hernandez, A., Rico-García, E., Feregrino-Pérez, A. A., & Guevara-González, R. G. (2022). Biological macromolecules as nutraceuticals (Biological Macromolecules) (pp. 97–138). Elsevier.
  • Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I., Brozell, S. R., Cerutti, D., Cheatham, T., Cruzeiro, V. W. D., Darden, T., & Duke, R. E. (2021). Amber 2021: Reference Manual.
  • Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Merz, Jr, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. J. J. O. C. C. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Che, X., Zheng, L., Dang, Q., & Bai, X. (2008). Synthesis of novel pyrimidine fused 8-membered heterocycles via iminium ion cyclization reactions. The Journal of Organic Chemistry, 73(3), 1147–1149. https://doi.org/10.1021/jo7020746
  • Creutzfeldt, W. (1999). Effects of the α‐glucosidase inhibitor acarbose on the development of long‐term complications in diabetic animals: Pathophysiological and therapeutic implications. Diabetes/Metabolism Research & Reviews, 15(4), 289–296. https://doi.org/10.1002/(SICI)1520-7560(199907/08)15:4<289::AID-DMRR48>3.0.CO;2-V
  • Cui, X., Ma, J., Zeng, T., Xu, J., Li, Y., & Wang, X. (2021). Metal-free cascade synthesis of unsymmetrical 2-aminopyrimidines from imidazolate enaminones. RSC Advances, 11(39), 24247–24253. https://doi.org/10.1039/d1ra04319f
  • De, S., Aamna, B., Sahu, R., Parida, S., Behera, S. K., & Dan, A. K. (2022). Seeking heterocyclic scaffolds as antivirals against dengue virus. European Journal of Medicinal Chemistry, 240, 114576. https://doi.org/10.1016/j.ejmech.2022.114576
  • Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of diabetes and diabetes-related complications. Physical Therapy, 88(11), 1254–1264. https://doi.org/10.2522/ptj.20080020
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • Etsassala, N. G., Badmus, J. A., Marnewick, J. L., Iwuoha, E. I., Nchu, F., & Hussein, A. A. (2020). Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of salvia aurita constituents. Antioxidants, 9(11), 1149. https://doi.org/10.3390/antiox9111149
  • Ferreira, S. B., Sodero, A. C., Cardoso, M. F., Lima, E. S., Kaiser, C. R., Silva, F. P., Jr., & Ferreira, V. F. (2010). Synthesis, biological activity, and molecular modeling studies of 1 h-1, 2, 3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. Journal of Medicinal Chemistry, 53(6), 2364–2375. https://doi.org/10.1021/jm901265h
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Grant, B. J., Skjaerven, L., & Yao, X.-Q. (2021). The Bio3D packages for structural bioinformatics. Protein Science: A Publication of the Protein Society, 30(1), 20–30. https://doi.org/10.1002/pro.3923
  • Guerreiro, L. R., Carreiro, E. P., Fernandes, L., Cardote, T. A., Moreira, R., Caldeira, A. T., Guedes, R. C., & Burke, A. (2013). Five-membered iminocyclitol α-glucosidase inhibitors: Synthetic, biological screening and in silico studies. Bioorganic & Medicinal Chemistry, 21(7), 1911–1917. https://doi.org/10.1016/j.bmc.2013.01.030
  • Hafez, H. N., Hussein, H. A., & El-Gazzar, A.-R B. (2010). Synthesis of substituted thieno [2, 3-d] pyrimidine-2, 4-dithiones and their S-glycoside analogues as potential antiviral and antibacterial agents. European Journal of Medicinal Chemistry, 45(9), 4026–4034. https://doi.org/10.1016/j.ejmech.2010.05.060
  • Han, Y., Lee, S. H., Lee, I.-S., & Lee, K. Y. (2017). Regulatory effects of 4-methoxychalcone on adipocyte differentiation through PPARγ activation and reverse effect on TNF-α in 3T3-L1 cells. Food & Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 106(Pt A), 17–24. https://doi.org/10.1016/j.fct.2017.05.032
  • Harrison, W. T., Yathirajan, H., Anilkumar, H., Sarojini, B., & Narayana, B. (2006). 1-(4-Fluorophenyl)-3-(4-methoxyphenyl) prop-2-en-1-one. Acta Crystallographica Section E Structure Reports Online, 62(8), o3251–o3253. https://doi.org/10.1107/S160053680602530X
  • Hese, S. V., Meshram, R. J., Kamble, R. D., Mogle, P. P., Patil, K. K., Kamble, S. S., Gacche, R. N., & Dawane, B. S. (2017). Antidiabetic and allied biochemical roles of new chromeno-pyrano pyrimidine compounds: Synthesis, in vitro and in silico analysis. Medicinal Chemistry Research, 26(4), 805–818. https://doi.org/10.1007/s00044-017-1794-0
  • Hevener, K. E., Ball, D. M., Buolamwini, J. K., & Lee, R. E. (2008). Quantitative structure–activity relationship studies on nitrofuranyl anti-tubercular agents. Bioorganic & Medicinal Chemistry, 16(17), 8042–8053. https://doi.org/10.1016/j.bmc.2008.07.070
  • Hou, W., & Xu, H. (2022). Incorporating selenium into heterocycles and natural products—From chemical properties to pharmacological activities. Journal of Medicinal Chemistry, 65(6), 4436–4456. https://doi.org/10.1021/acs.jmedchem.1c01859
  • Humphrey, W., Dalke, A., & Schulten, K. J. J. O. M. G. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Iqbal, S., Shaikh, N. N., Khan, K. M., Kiran, S., Naz, S., Ul-Haq, Z., Perveen, S., & Choudhary, M. I. (2022). Synthesis of 2-aminopyrimidine derivatives and their evaluation as β-glucuronidase inhibitors: In vitro and in silico studies. Molecules, 27(22), 7786. https://doi.org/10.3390/molecules27227786
  • Jakovljević, K., Joksović, M. D., Matić, I. Z., Petrović, N., Stanojković, T., Sladić, D., Vujčić, M., Janović, B., Joksović, L., Trifunović, S., & Marković, V. (2018). Novel 1, 3, 4-thiadiazole–chalcone hybrids containing catechol moiety: Synthesis, antioxidant activity, cytotoxicity and DNA interaction studies. MedChemComm, 9(10), 1679–1697. https://doi.org/10.1039/c8md00316e
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). JD Madura, RW Impey, and ML Klein. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Joshi, G., Nayyar, H., Marin Alex, J. S., Vishwakarma, G., Mittal, S., & Kumar, R. (2016). Pyrimidine-fused derivatives: Synthetic strategies and medicinal attributes. Current Topics in Medicinal Chemistry, 16(28), 3175–3210. https://doi.org/10.2174/1568026616666160506145046
  • Kakakhan, C., Türkeş, C., Güleç, Ö., Demir, Y., Arslan, M., Özkemahlı, G., & Beydemir, Ş. (2023). Exploration of 1, 2, 3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorganic & Medicinal Chemistry, 77, 117111. https://doi.org/10.1016/j.bmc.2022.117111
  • Kalichelvan Kaliyamoorthy, P. A. (2009). α-Glucosidase inhibitory and antidiabetic activities of ethanolic extract of Pisonia alba span leaves. International Journal of Integrative Biology, 6(1), 41.
  • Khatkar, A., Nanda, A., Kumar, P., & Narasimhan, B. (2017). Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arabian Journal of Chemistry, 10, S3804–S3815. https://doi.org/10.1016/j.arabjc.2014.05.018
  • Kuthati, B., Thalari, G., Bommarapu, V., Mulakayala, C., Chitta, S. K., Mulakayala., & N., Ismail. (2017). Synthesis of novel spiro [pyrazolo [4, 3-d] pyrimidinones and spiro [benzo [4, 5] thieno [2, 3-d] pyrimidine-2, 3′-indoline]-2′, 4 (3H)-diones and their evaluation for anticancer activity. Bioorganic & Medicinal Chemistry Letters, 27(6), 1446–1450. https://doi.org/10.1016/j.bmcl.2017.01.088
  • Lebovitz, H. E. (1997). Alpha-glucosidase inhibitors. Endocrinology & Metabolism Clinics of North America, 26(3), 539–551. https://doi.org/10.1016/s0889-8529(05)70266-8
  • Lee, Y. H., Park, J., Ahn, S., Lee, Y., Lee, J., Shin, S. Y., Koh, D., & Lim, Y. (2019). Design, synthesis, and biological evaluation of polyphenols with 4, 6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A. Daru. Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 27(1), 265–281. https://doi.org/10.1007/s40199-019-00272-5
  • Liu, Y.-F., Liang, W.-J., Zhao, P.-H., Li, X.-H., Liu, S.-N., & Liu, Y.-Q. (2014). Synthesis and crystal structures of (E)-1-phenyl-3-[(2, 4, 6-trimethylphenyl)] prop-2-en-1-one and (E)-1-phenyl-3-[(4-trifluoromethylphenyl)] prop-2-en-1-one. Molecular Crystals & Liquid Crystals, 593(1), 253–260. https://doi.org/10.1080/15421406.2013.875740
  • Lopez-Candales, A. (2001). Metabolic syndrome X: A comprehensive review of the pathophysiology and recommended therapy. Journal of Medicine, 32(5–6), 283–300.
  • Madar, Z., & Hazan, A. (1993). Effect of miglitol and acarbose on starch digestion, daily plasma glucose profiles and cataract formation. Journal of Basic & Clinical Physiology & Pharmacology, 4(1–2), 69–81. https://doi.org/10.1515/jbcpp.1993.4.1-2.69
  • Mehta, A. G., & Patel, A. A. (2009). Studies on novel N4-[4, 6-diaryl-2-pyrimidinyl]-7-chloro-4-quinolinamine and their microbicidal efficacy. E-Journal of Chemistry, 6(S1), S406–S412. https://doi.org/10.1155/2009/301426
  • Mohamed, M. S., Kamel, R., & Fatahala, S. S. (2010). Synthesis and biological evaluation of some thio containing pyrrolo [2, 3-d] pyrimidine derivatives for their anti-inflammatory and anti-microbial activities. European Journal of Medicinal Chemistry, 45(7), 2994–3004. https://doi.org/10.1016/j.ejmech.2010.03.028
  • Mosen, D. M., Schmittdiel, J., Hibbard, J., Sobel, D., Remmers, C., & Bellows, J. (2007). Is patient activation associated with outcomes of care for adults with chronic conditions? The Journal of Ambulatory Care Management, 30(1), 21–29. https://doi.org/10.1097/00004479-200701000-00005
  • Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2022). Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochemistry, 120, 250–259. https://doi.org/10.1016/j.procbio.2022.06.009
  • Obaid, R. J., Naeem, N., Mughal, E. U., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2022). Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Advances, 12(31), 19764–19855. https://doi.org/10.1039/d2ra03081k
  • Panahi, F., Yousefi, R., Mehraban, M. H., & Khalafi-Nezhad, A. (2013). Synthesis of new pyrimidine-fused derivatives as potent and selective antidiabetic α-glucosidase inhibitors. Carbohydrate Research, 380, 81–91. https://doi.org/10.1016/j.carres.2013.07.008
  • Pathak, V., Maurya, H. K., Sharma, S., Srivastava, K. K., & Gupta, A. (2014). Synthesis and biological evaluation of substituted 4, 6-diarylpyrimidines and 3, 5-diphenyl-4, 5-dihydro-1H-pyrazoles as anti-tubercular agents. Bioorganic & Medicinal Chemistry Letters, 24(13), 2892–2896. https://doi.org/10.1016/j.bmcl.2014.04.094
  • Pathe, G. K., & Ahmed, N. (2015). Mild and efficient reductive deoxygenation of epoxides to olefins with tin (II) chloride/sodium iodide as a novel reagent. Synthesis, 47(22), 3542–3552. https://doi.org/10.1055/s-0034-1378821
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Porter, J. R., & Barrett, T. G. (2005). Monogenic syndromes of abnormal glucose homeostasis: Clinical review and relevance to the understanding of the pathology of insulin resistance and β cell failure. Journal of Medical Genetics, 42(12), 893–902. https://doi.org/10.1136/jmg.2005.030791
  • Ripsin, C. M., Kang, H., & Urban, R. J. (2009). Management of blood glucose in type 2 diabetes mellitus. American Family Physician, 79(1), 29–36.
  • Roujeinikova, A., Raasch, C., Sedelnikova, S., Liebl, W., & Rice, D. W. (2002). Crystal structure of Thermotoga maritima 4-α-glucanotransferase and its acarbose complex: Implications for substrate specificity and catalysis. Journal of Molecular Biology, 321(1), 149–162. https://doi.org/10.1016/s0022-2836(02)00570-3
  • Saleem, F., Mohammed Khan, K., Chigurupati, S., Andriani, Y., Solangi, M., Hameed, S., Abdel Monem Abdel Hafez, A., Begum, F., Arif Lodhi, M., Taha, M., Rahim, F., Tengku Muhammad, T. S. B., Perveen., & Kanwal, S. (2022). Dicyanoanilines as potential and dual inhibitors of a-amylase and a-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. Arabian Journal of Chemistry, 15(3), 103651. https://doi.org/10.1016/j.arabjc.2021.103651
  • Sarwar, M. W., Riaz, A., Dilshad, S. M. R., Al-Qahtani, A., Nawaz-Ul-Rehman, M. S., & Mubin, M. (2018). Structure activity relationship (SAR) and quantitative structure activity relationship (QSAR) studies showed plant flavonoids as potential inhibitors of dengue NS2B–NS3 protease. BMC Structural Biology, 18(1), 1–10. https://doi.org/10.1186/s12900-018-0084-5
  • Shahidpour, S., Panahi, F., Yousefi, R., Nourisefat, M., Nabipoor, M., & Khalafi-Nezhad, A. (2015). Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Medicinal Chemistry Research, 24(7), 3086–3096. https://doi.org/10.1007/s00044-015-1356-2
  • Sharma, V., Chitranshi, N., & Agarwal, A. K. (2014). Significance and biological importance of pyrimidine in the microbial world. International Journal of Medicinal Chemistry, 2014, 1–31. https://doi.org/10.1155/2014/202784
  • Shettigar, V., Teh, J.-J., Fun, H.-K., Razak, I. A., Patil, P., & Dharmaprakash, S. (2006). 3, 4-Dimethoxychalcone. Acta Crystallographica Section E Structure Reports Online, 62(10), o4646–o4647. https://doi.org/10.1107/S1600536806036920
  • Shim, Y.-J., Doo, H.-K., Ahn, S.-Y., Kim, Y.-S., Seong, J.-K., Park, I.-S., & Min, B.-H. (2003). Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. Journal of Ethnopharmacology, 85(2–3), 283–287. https://doi.org/10.1016/s0378-8741(02)00370-7
  • Shinde, J., Taldone, T., Barletta, M., Kunaparaju, N., Hu, B., Kumar, S., Placido, J., & Zito, S. W. (2008). α Glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto–Kakizaki (GK) rats. Carbohydrate Research, 343(7), 1278–1281. https://doi.org/10.1016/j.carres.2008.03.003
  • Siddiqui, S. M., & Azam, A. (2014). Synthesis, characterization of 4, 6-disubstituted aminopyrimidines and their sulphonamide derivatives as anti-amoebic agents. Medicinal Chemistry Research, 23(6), 2976–2984. https://doi.org/10.1007/s00044-013-0877-9
  • Standl, E., & Schnell, O. (2012). Alpha-glucosidase inhibitors 2012–cardiovascular considerations and trial evaluation. Diabetes & Vascular Disease Research, 9(3), 163–169. https://doi.org/10.1177/1479164112441524
  • Suresh, L., Kumar, P. S. V., Poornachandra, Y., Kumar, C. G., & Chandramouli, G. (2017). Design, synthesis and evaluation of novel pyrazolo-pyrimido [4, 5-d] pyrimidine derivatives as potent antibacterial and biofilm inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(6), 1451–1457. https://doi.org/10.1016/j.bmcl.2017.01.087
  • Suresh, L., Onkara, P., Kumar, P. S. V., Pydisetty, Y., & Chandramouli, G. (2016). Ionic liquid-promoted multicomponent synthesis of fused tetrazolo [1, 5-a] pyrimidines as α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(16), 4007–4014. https://doi.org/10.1016/j.bmcl.2016.06.086
  • Taha, M., Alrashedy, A. S., Almandil, N. B., Iqbal, N., Anouar, E. H., Nawaz, M., Uddin, N., Chigurupati, S., Wadood, A., Rahim, F., Das, S., Venugopal, V., Nawaz, F., & Khan, K. M. (2021). Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of α-glucosidase and α-amylase along with their in-silico study. International Journal of Biological Macromolecules, 190, 301–318. https://doi.org/10.1016/j.ijbiomac.2021.08.207
  • Treadwell, E. M. (2006). 4′-Methylchalcone. Acta Crystallographica Section E Structure Reports Online, 62(12), o5899–o5900. https://doi.org/10.1107/S1600536806050070
  • van Zanden, J. J., Wortelboer, H. M., Bijlsma, S., Punt, A., Usta, M., van Bladeren, P. J., Rietjens, I. M., & Cnubben, N. H. (2005). Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochemical Pharmacology, 69(4), 699–708. https://doi.org/10.1016/j.bcp.2004.11.002
  • Verma, C., Olasunkanmi, L. O., Ebenso, E. E., Quraishi, M. A., & Obot, I. B. (2016). Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: Experimental and theoretical studies. The Journal of Physical Chemistry C, 120(21), 11598–11611. https://doi.org/10.1021/acs.jpcc.6b04429
  • Wang, C., Cai, J., Zhang, M., & Zhao, X. (2017). Ag-assisted fluorination of unprotected 4, 6-disubstituted 2-aminopyrimidines with Selectfluor. The Journal of Organic Chemistry, 82(2), 1260–1265. https://doi.org/10.1021/acs.joc.6b02624
  • Wang, J., Li, H., Zu, L., & Wang, W. (2006). Highly enantioselective organocatalytic Michael addition reactions of ketones with chalcones. Advanced Synthesis & Catalysis, 348(4-5)‐, 425–428. https://doi.org/10.1002/adsc.200505420
  • Wang, S.-B., Deng, X.-Q., Zheng, Y., Yuan, Y.-P., Quan, Z.-S., & Guan, L.-P. (2012). Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo [1, 5-c] thieno [2, 3-e] pyrimidine derivatives. European Journal of Medicinal Chemistry, 56, 139–144. https://doi.org/10.1016/j.ejmech.2012.08.027
  • Wu, X., Ding, H., Hu, X., Pan, J., Liao, Y., Gong, D., & Zhang, G. (2018). Exploring inhibitory mechanism of gallocatechin gallate on a-amylase and a-glucosidase relevant to postprandial hyperglycemia. Journal of Functional Foods, 48, 200–209. https://doi.org/10.1016/j.jff.2018.07.022
  • Yar, M., Bajda, M., Shahzadi, L., Shahzad, S. A., Ahmed, M., Ashraf, M., Alam, U., Khan, I. U., & Khan, A. F. (2014). Novel synthesis of dihydropyrimidines for α-glucosidase inhibition to treat type 2 diabetes: In vitro biological evaluation and in silico docking. Bioorganic Chemistry, 54, 96–104. https://doi.org/10.1016/j.bioorg.2014.05.003
  • Yousefi, R., Alavian-Mehr, M.-M., Mokhtari, F., Panahi, F., Mehraban, M. H., & Khalafi-Nezhad, A. (2013). Pyrimidine-fused heterocycle derivatives as a novel class of inhibitors for α-glucosidase. Journal of Enzyme Inhibition & Medicinal Chemistry, 28(6), 1228–1235. https://doi.org/10.3109/14756366.2012.727812
  • Zhang, J., Peng, J.-F., Bai, Y.-B., Wang, P., Wang, T., Gao, J.-M., & Zhang, Z.-T. (2016). Synthesis of pyrazolo [1, 5-a] pyrimidine derivatives and their antifungal activities against phytopathogenic fungi in vitro. Molecular Diversity, 20(4), 887–896. https://doi.org/10.1007/s11030-016-9690-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.