219
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico investigation of the structural stability as the origin of the pathogenicity of α-synuclein protofibrils

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 14103-14115 | Received 13 Dec 2022, Accepted 31 Jan 2023, Published online: 10 Apr 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aguzzi, A., Heikenwalder, M., & Polymenidou, M. (2007). Insights into prion strains and neurotoxicity. Nature Reviews. Molecular Cell Biology, 8(7), 552–561. https://doi.org/10.1038/nrm2204
  • Aguzzi, A., & Rajendran, L. (2009). The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron, 64(6), 783–790. https://doi.org/10.1016/j.neuron.2009.12.016
  • Ahn, T.-B., Kim, S. Y., Kim, J. Y., Park, S.-S., Lee, D. S., Min, H. J., Kim, Y. K., Kim, S. E., Kim, J.-M., Kim, H.-J., Cho, J., & Jeon, B. S. (2008). α-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology, 70(1), 43–49. https://doi.org/10.1212/01.wnl.0000271080.53272.c7
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics. 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., & Lindahl, E. (2010). Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/ct900549r
  • Boyer, D. R., Li, B., Sun, C., Fan, W., Sawaya, M. R., Jiang, L., & Eisenberg, D. S. (2019). Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nature Structural & Molecular Biology, 26(11), 1044–1052. https://doi.org/10.1038/s41594-019-0322-y
  • Boyer, D. R., Li, B., Sun, C., Fan, W., Zhou, K., Hughes, M. P., Sawaya, M. R., Jiang, L., & Eisenberg, D. S. (2020). The α-synuclein hereditary mutation E46K unlocks a more stable, pathogenic fibril structure. Proceedings of the National Academy of Sciences of the United States of America, 117(7), 3592–3602. https://doi.org/10.1073/pnas.1917914117
  • Brundin, P., Melki, R., & Kopito, R. (2010). Prion-like transmission of protein aggregates in neurodegenerative diseases. Nature Reviews. Molecular Cell Biology, 11(4), 301–307. https://doi.org/10.1038/nrm2873
  • Burré, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M. R., & Südhof, T. C. (2010). α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science (New York, N.Y.), 329(5999), 1663–1667. https://doi.org/10.1126/science.1195227
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chartier-Harlin, M.-C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M., & Destée, A. (2004). α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet (London, England), 364(9440), 1167–1169. https://doi.org/10.1016/S0140-6736(04)17103-1
  • Collinge, J., & Clarke, A. R. (2007). A general model of prion strains and their pathogenicity. Science (New York, N.Y.), 318(5852), 930–936. https://doi.org/10.1126/science.1138718
  • Comellas, G., Lemkau, L. R., Zhou, D. H., George, J. M., & Rienstra, C. M. (2012). Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles. Journal of the American Chemical Society, 134(11), 5090–5099. https://doi.org/10.1021/ja209019s
  • Dear, A. J., Meisl, G., Šarić, A., Michaels, T. C. T., Kjaergaard, M., Linse, S., & Knowles, T. P. J. (2020). Identification of on- and off-pathway oligomers in amyloid fibril formation. Chemical Science, 11(24), 6236–6247. https://doi.org/10.1039/C9SC06501F
  • Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D.-S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D., & Langston, J. W. (2004). Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Annals of Neurology, 55(2), 174–179. https://doi.org/10.1002/ana.10846
  • Guerrero-Ferreira, R., Taylor, N. M., Arteni, A.-A., Kumari, P., Mona, D., Ringler, P., Britschgi, M., Lauer, M. E., Makky, A., Verasdonck, J., Riek, R., Melki, R., Meier, B. H., Böckmann, A., Bousset, L., & Stahlberg, H. (2019). Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. eLife, 8, e48907. https://doi.org/10.7554/eLife.48907
  • Guerrero-Ferreira, R., Taylor, N. M., Mona, D., Ringler, P., Lauer, M. E., Riek, R., Britschgi, M., & Stahlberg, H. (2018). Cryo-EM structure of alpha-synuclein fibrils. eLife, 7, e36402. https://doi.org/10.7554/eLife.36402
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(Sici)1096-987x(199709)18:12 < 1463::Aid-Jcc4 > 3.0.Co;2-H
  • Hoyer, W., Antony, T., Cherny, D., Heim, G., Jovin, T. M., & Subramaniam, V. (2002). Dependence of α-synuclein aggregate morphology on solution conditions. Journal of Molecular Biology, 322(2), 383–393. https://doi.org/10.1016/S0022-2836(02)00775-1
  • Hub, J. S., de Groot, B. L., & van der Spoel, D. (2010). g_wham—A free weighted histogram analysis implementation including robust error and autocorrelation estimates. Journal of Chemical Theory and Computation, 6(12), 3713–3720. https://doi.org/10.1021/ct100494z
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics. 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45–51. https://doi.org/10.1038/nature12481
  • Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E., Brookes, D. H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D. W., Dolinsky, T., Konecny, R., Koes, D. R., Nielsen, J. E., Head-Gordon, T., Geng, W., … Baker, N. A. (2018). Improvements to the APBS biomolecular solvation software suite. Protein Science, 27(1), 112–128. https://doi.org/10.1002/pro.3280
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211
  • Karpinar, D. P., Balija, M. B. G., Kügler, S., Opazo, F., Rezaei-Ghaleh, N., Wender, N., Kim, H.-Y., Taschenberger, G., Falkenburger, B. H., Heise, H., Kumar, A., Riedel, D., Fichtner, L., Voigt, A., Braus, G. H., Giller, K., Becker, S., Herzig, A., Baldus, M., … Zweckstetter, M. (2009). Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson’s disease models. The EMBO Journal, 28(20), 3256–3268. https://doi.org/10.1038/emboj.2009.257
  • Lemkau, L. R., Comellas, G., Kloepper, K. D., Woods, W. S., George, J. M., & Rienstra, C. M. (2012). Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. The Journal of Biological Chemistry, 287(14), 11526–11532. https://doi.org/10.1074/jbc.M111.306902
  • Lemkau, L. R., Comellas, G., Lee, S. W., Rikardsen, L. K., Woods, W. S., George, J. M., & Rienstra, C. M. (2013). Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson’s disease associated mutations A53T and E46K. PLoS One, 8(3), e49750. https://doi.org/10.1371/journal.pone.0049750
  • Lemkul, J. A., & Bevan, D. R. (2010). Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. The Journal of Physical Chemistry B, 114(4), 1652–1660. https://doi.org/10.1021/jp9110794
  • Li, B., Ge, P., Murray, K. A., Sheth, P., Zhang, M., Nair, G., Sawaya, M. R., Shin, W. S., Boyer, D. R., Ye, S., Eisenberg, D. S., Zhou, Z. H., & Jiang, L. (2018). Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nature Communications, 9(1), 3609. https://doi.org/10.1038/s41467-018-05971-2
  • Li, Y., Zhao, C., Luo, F., Liu, Z., Gui, X., Luo, Z., Zhang, X., Li, D., Liu, C., & Li, X. (2018). Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Research, 28(9), 897–903. https://doi.org/10.1038/s41422-018-0075-x
  • Luk, K. C., Kehm, V. M., Zhang, B., O'Brien, P., Trojanowski, J. Q., & Lee, V. M. Y. (2012). Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. The Journal of Experimental Medicine, 209(5), 975–986. https://doi.org/10.1084/jem.20112457
  • Mehra, S., Sahay, S., & Maji, S. K. (2019). α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta. Proteins and Proteomics, 1867(10), 890–908. https://doi.org/10.1016/j.bbapap.2019.03.001
  • Morales, R., Abid, K., & Soto, C. (2007). The prion strain phenomenon: Molecular basis and unprecedented features. Biochimica et Biophysica Acta, 1772(6), 681–691. https://doi.org/10.1016/j.bbadis.2006.12.006
  • Mougenot, A.-L., Nicot, S., Bencsik, A., Morignat, E., Verchère, J., Lakhdar, L., Legastelois, S., & Baron, T. (2012). Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiology of Aging, 33(9), 2225–2228. https://doi.org/10.1016/j.neurobiolaging.2011.06.022
  • Ni, X., McGlinchey, R. P., Jiang, J., & Lee, J. C. (2019). Structural insights into α-synuclein fibril polymorphism: Effects of Parkinson’s disease-related C-terminal truncations. Journal of Molecular Biology, 431(19), 3913–3919. https://doi.org/10.1016/j.jmb.2019.07.001
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Ross, O. A., Braithwaite, A. T., Skipper, L. M., Kachergus, J., Hulihan, M. M., Middleton, F. A., Nishioka, K., Fuchs, J., Gasser, T., Maraganore, D. M., Adler, C. H., Larvor, L., Chartier-Harlin, M.-C., Nilsson, C., Langston, J. W., Gwinn, K., Hattori, N., & Farrer, M. J. (2008). Genomic investigation of α-synuclein multiplication and parkinsonism. Annals of Neurology, 63(6), 743–750. https://doi.org/10.1002/ana.21380
  • Schrodinger, L. L. C. (2015). The PyMOL molecular graphics system, version 1.8.
  • Schweighauser, M., Shi, Y., Tarutani, A., Kametani, F., Murzin, A. G., Ghetti, B., Matsubara, T., Tomita, T., Ando, T., Hasegawa, K., Murayama, S., Yoshida, M., Hasegawa, M., Scheres, S. H. W., & Goedert, M. (2020). Structures of α-synuclein filaments from multiple system atrophy. Nature, 585(7825), 464–469. https://doi.org/10.1038/s41586-020-2317-6
  • Sekine, T., Kagaya, H., Funayama, M., Li, Y., Yoshino, H., Tomiyama, H., & Hattori, N. (2010). Clinical course of the first Asian family with Parkinsonism related to SNCA triplication. Movement Disorders, 25(16), 2871–2875. https://doi.org/10.1002/mds.23313
  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., … Gwinn-Hardy, K. (2003). α-Synuclein locus triplication causes Parkinson’s disease. Science (New York, N.Y.), 302(5646), 841–841. https://doi.org/10.1126/science.1090278
  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6469–6473. https://doi.org/10.1073/pnas.95.11.6469
  • Sun, Y., Hou, S., Zhao, K., Long, H., Liu, Z., Gao, J., Zhang, Y., Su, X.-D., Li, D., & Liu, C. (2020). Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation. Cell Research, 30(4), 360–362. https://doi.org/10.1038/s41422-020-0299-4
  • Touw, W. G., Baakman, C., Black, J., Te Beek, T. A. H., Krieger, E., Joosten, R. P., & Vriend, G. (2015). A series of PDB-related databanks for everyday needs. Nucleic Acids Research, 43(Database issue), D364–D368. https://doi.org/10.1093/nar/gku1028
  • Tuttle, M. D., Comellas, G., Nieuwkoop, A. J., Covell, D. J., Berthold, D. A., Kloepper, K. D., Courtney, J. M., Kim, J. K., Barclay, A. M., Kendall, A., Wan, W., Stubbs, G., Schwieters, C. D., Lee, V. M. Y., George, J. M., & Rienstra, C. M. (2016). Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature Structural & Molecular Biology, 23(5), 409–415. https://doi.org/10.1038/nsmb.3194
  • Watson, M. D., & Lee, J. C. (2019). N-Terminal acetylation affects α-synuclein fibril polymorphism. Biochemistry, 58(35), 3630–3633. https://doi.org/10.1021/acs.biochem.9b00629
  • Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., Tzitzilonis, C., Soragni, A., Jessberger, S., Mira, H., Consiglio, A., Pham, E., Masliah, E., Gage, F. H., & Riek, R. (2011). In vivo demonstration that α-synuclein oligomers are toxic. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4194–4199. https://doi.org/10.1073/pnas.1100976108
  • Yang, Y., Shi, Y., Schweighauser, M., Zhang, X., Kotecha, A., Murzin, A. G., Garringer, H. J., Cullinane, P. W., Saito, Y., Foroud, T., Warner, T. T., Hasegawa, K., Vidal, R., Murayama, S., Revesz, T., Ghetti, B., Hasegawa, M., Lashley, T., Scheres, S. H. W., & Goedert, M. (2022). Structures of α-synuclein filaments from human brains with Lewy pathology. Nature, 610(7933), 791–795. https://doi.org/10.1038/s41586-022-05319-3
  • Zhao, K., Li, Y., Liu, Z., Long, H., Zhao, C., Luo, F., Sun, Y., Tao, Y., Su, X.-D., Li, D., Li, X., & Liu, C. (2020). Parkinson’s disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nature Communications, 11(1), 2643. https://doi.org/10.1038/s41467-020-16386-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.