253
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and anxiolytic effect of europium metallic complex containing lapachol [Eu(DBM)3. LAP] in adult zebrafish through serotonergic neurotransmission: in vivo and in silico approach

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1280-1292 | Received 20 Dec 2022, Accepted 29 Mar 2023, Published online: 08 Apr 2023

References

  • Araújo, E. L., Alencar, J. R. B., & Rolim Neto, P. J. (2002). Lapachol: Segurança e eficácia na terapêutica. Revista Brasileira De Farmacognosia, 12, 57–59. https://doi.org/10.1590/S0102-695X2002000300028
  • Barbosa, T. P., & Neto, H. D. (2013). Preparação de derivados do lapachol em meio ácido e em meio básico: Uma proposta de experimentos para a disciplina de química orgânica experimental. Química Nova, 36(2), 331–334. https://doi.org/10.1590/S0100-40422013000200021
  • Basak, S., Gicheru, Y., Kapoor, A., Mayer, M. L., Filizola, M., & Chakrapani, S. (2019). Molecular mechanism of setron-mediated inhibition of full-length 5-HT3A receptor. Nature Communications, 10(1), 11. https://doi.org/10.1038/s41467-019-11142-8
  • Batista de Andrade Neto, J., Pessoa de Farias Cabral, V., Brito Nogueira, L. F., Rocha da Silva, C., Gurgel do Amaral Valente Sá, L., Ramos da Silva, A., Barbosa da Silva, W. M., Silva, J., Marinho, E. S., Cavalcanti, B. C., Odorico de Moraes, M., & Nobre, H. V., Jr. (2021). Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microbial Pathogenesis, 155, 104892. https://doi.org/10.1016/j.micpath.2021.104892
  • Benneh, C. K., Biney, R. P., Mante, P. K., Tandoh, A., Adongo, D. W., & Woode, E. (2017). Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—Involvement of GABAergic and 5-HT systems. Journal of Ethnopharmacology, 207, 129–145. https://doi.org/10.1016/j.jep.2017.06.012
  • Biovia, D. S. (2016). Discovery studio modeling environment, release 2017. Dassault Systèmes.
  • Bomfim, B. L. S., Farias, J. C., Vieira, F. J., Barros, R. F. M., & da Fonseca Filho, I. C. (2017). Pau-D’arco-Roxo (Handroanthus impetiginosus (Mart. ex DC.) Mattos): Conhecimento e uso madeireiro em comunidades rurais do nordeste do Brasil. Gaia Science, 11(2), 57-70. https://doi.org/10.22478/ufpb.1981-1268.2017v11n2.34878
  • Caruso, F., Martínez, M. A., Rossi, M., Goldberg, A., Villalba, M. E. C., & Aymonino, P. J. (2009). Crystal and molecular structure of manganese(II) lapacholate, a novel polymeric species undergoing temperature-reversible metal to ligand electron transfer. Inorganic Chemistry, 48(8), 3529–3534. https://doi.org/10.1021/ic8015194
  • Castro, F. A. V., de Souza, G. F. M., & Pereira, M. D. (2020). Characterization of lapachol cytotoxicity: Contribution of glutathione depletion for oxidative stress in Saccharomyces cerevisiae. Folia Microbiologica, 65(1), 197–204. https://doi.org/10.1007/s12223-019-00722-2
  • Chen, Q., Bai, L., Zhou, X., Xu, P., Li, X., Xu, H., Zheng, Y., Zhao, Y., Lu, S., & Xue, M. (2020). Development of long-circulating lapachol nanoparticles: Formation, characterization, pharmacokinetics, distribution and cytotoxicity. RSC Advances, 10(50), 30025–30034. https://doi.org/10.1039/d0ra05752e
  • Cosacak, M. I., Bhattarai, P., Bocova, L., Dzewas, T., Mashkaryan, V., Papadimitriou, C., Brandt, K., Hollak, H., Antos, C. L., & Kizil, C. (2017). Human TAUP301L overexpression results in TAU hyperphosphorylation without neurofibrillary tangles in adult zebrafish brain. Scientific Reports, 7(1), 14. https://doi.org/10.1038/s41598-017-13311-5
  • Csizmadia, P. (2019). MarvinSketch and MarvinView: Molecule applets for the world wide web. https://doi.org/10.3390/ecsoc-3-01775
  • Del Rio, K. P., De Moura, K. C. G., Do Carmo, M., Pinto, F. R., & Leitão, G. G. (2015). Separation of new naphthoxazole derivatives of lapachol by high-speed counter-current chromatography. Journal of Liquid Chromatography & Related Technologies, 38(15), 1479–1485. https://doi.org/10.1080/10826076.2015.1063505
  • DeLano, W. L. (2020). The PyMOL molecular graphics system, version 2.3. Schrödinger LLC. https://doi.org/10.1038/hr.2014.17
  • Ferreira, M. K. A., Da Silva, A. W., dos Santos Moura, A. L., Sales, K. V. B., Marinho, E. M., Cardoso, J. N. M., Marinho, M. M., Bandeira, P. N., Magalhães, F. E. A., Marinho, E. S., De Menezes, J., & Dos Santos, H. S. (2021). Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy & Behavior: E&B, 117, 107881. https://doi.org/10.1016/j.yebeh.2021.107881
  • Gebauer, D. L., Pagnussat, N., Piato, Â. L., Schaefer, I. C., Bonan, C. D., & Lara, D. R. (2011). Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacology, Biochemistry, and Behavior, 99(3), 480–486. https://doi.org/10.1016/j.pbb.2011.04.021
  • Gonçalves, N. G. G., de Araújo, J. I. F., Magalhães, F. E. A., Mendes, F. R. S., Lobo, M. D. P., Moreira, A. d. O., & Moreira, R. d. A. (2020). Protein fraction from Artocarpus altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. Journal of Functional Foods, 66, 103772. https://doi.org/10.1016/j.jff.2019.103772
  • Griebel, G., & Holmes, A. (2013). 50 years of hurdles and hope in anxiolytic drug discovery. Nature Reviews. Drug Discovery, 12(9), 667–687. https://doi.org/10.1038/nrd4075
  • Griffith, J. P., Kim, J. L., Kim, E. E., Sintchak, M. D., Thomson, J. A., Fitzgibbon, M. J., Fleming, M. A., Caron, P. R., Hsiao, K., & Navia, M. A. (1995). X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell, 82(3), 507–522. https://doi.org/10.1016/0092-8674(95)90439-5
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Handley, S. L. (1995). 5-Hydroxytryptamine pathways in anxiety and its treatment. Pharmacology & Therapeutics, 66(1), 103–148. https://doi.org/10.1016/0163-7258(95)00004-Z
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hascoët, M., Bourin, M., & Nic Dhonnchadha, B. A. (2001). The mouse light-dark paradigm: A review. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 25(1), 141–166. https://doi.org/10.1016/S0278-5846(00)00151-2
  • Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2), 444–460. https://doi.org/10.1021/ci800293n
  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G. J., White, S., … Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111
  • Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock Vina with AutoDockTools: A tutorial (p. 32). The Scripps Research Institute Molecular Graphics Laboratory.
  • Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., DeCrescenzo, G. A., Devraj, R. V., Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., & Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters, 18(17), 4872–4875. https://doi.org/10.1016/j.bmcl.2008.07.071
  • Hughes, T. B., Miller, G. P., & Swamidass, S. J. (2015). Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Central Science, 1(4), 168–180. https://doi.org/10.1021/acscentsci.5b00131
  • Ivanenkov, Y. A., Zagribelnyy, B. A., & Aladinskiy, V. A. (2019). Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? Journal of Medicinal Chemistry, 62(22), 10026–10043. https://doi.org/10.1021/acs.jmedchem.9b00004
  • Jia, M., & Pittman, J. (2014). Deficits in striatal dopamine and hippocampal serotonin following induction of anxiety/depressive-like behaviors by bisphenol A. Archives of Neuroscience, 2(2), 1–6. https://doi.org/10.5812/archneurosci.18555
  • Johnson, T. W., Dress, K. R., & Edwards, M. (2009). Using the Golden Triangle to optimize clearance and oral absorption. Bioorganic & Medicinal Chemistry Letters, 19(19), 5560–5564. https://doi.org/10.1016/j.bmcl.2009.08.045
  • Juvvadi, P. R., Fox, D., Bobay, B. G., Hoy, M. J., Gobeil, S. M. C., Venters, R. A., Chang, Z., Lin, J. J., Averette, A. F., Cole, D. C., Barrington, B. C., Wheaton, J. D., Ciofani, M., Trzoss, M., Li, X., Lee, S. C., Chen, Y. L., Mutz, M., Spicer, L. D., … Steinbach, W. J. (2019). Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nature Communications, 10(1), 1-18. https://doi.org/10.1038/s41467-019-12199-1
  • Kalueff, A. V., Kaluyeva, A., & Maillet, E. L. (2017). Anxiolytic-like effects of noribogaine in zebrafish. Behavioural Brain Research, 330, 63–67. https://doi.org/10.1016/j.bbr.2017.05.008
  • Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: Zebrafish swim into view. Nature Reviews. Genetics, 8(5), 353–367. https://doi.org/10.1038/nrg2091
  • Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: Increasing saturation as an approach to improving clinical success. Journal of Medicinal Chemistry, 52(21), 6752–6756. https://doi.org/10.1021/jm901241e
  • MacRae, C. A., & Peterson, R. T. (2015). Zebrafish as tools for drug discovery. Nature Reviews. Drug Discovery, 14(10), 721–731. https://doi.org/10.1038/nrd4627
  • Marinho, E. M., Batista de Andrade Neto, J., Silva, J., Rocha da Silva, C., Cavalcanti, B. C., Marinho, E. S., & Nobre Júnior, H. V. (2020). Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microbial Pathogenesis, 148, 104365. https://doi.org/10.1016/j.micpath.2020.104365
  • Masiulis, S., Desai, R., Uchański, T., Serna Martin, I., Laverty, D., Karia, D., Malinauskas, T., Zivanov, J., Pardon, E., Kotecha, A., Steyaert, J., Miller, K. W., & Aricescu, A. R. (2019). GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 565(7740), 454–459. https://doi.org/10.1038/s41586-018-0832-5
  • Maximino, C., da Silva, A. W. B., Gouveia, A., & Herculano, A. M. (2011). Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(2), 624–631. https://doi.org/10.1016/j.pnpbp.2011.01.006
  • Moore, E. G., Samuel, A. P. S., & Raymond, K. N. (2009). From antenna to assay: Lessons learned in lanthanide luminescence. Accounts of Chemical Research, 42(4), 542–552. https://doi.org/10.1021/ar800211j
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. K., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nakamoto, K. (2008). Infrared and Raman spectra of inorganic and coordination compounds: Part B: Applications in coordination. Organometallic, and Bioinorganic Chemistry, 1, 1-408. https://doi.org/10.1002/9780470405888
  • Nowicki, M., Tran, S., Muraleetharan, A., Markovic, S., & Gerlai, R. (2014). Serotonin antagonists induce anxiolytic and anxiogenic-like behavior in zebrafish in a receptor-subtype dependent manner. Pharmacology, Biochemistry, and Behavior, 126, 170–180. https://doi.org/10.1016/j.pbb.2014.09.022
  • OECD. (1992). Fish, acute toxicity test. OECD Guidelines for the Testing of Chemicals (pp. 1–9).
  • Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85(22), 3533–3539. https://doi.org/10.1021/ja00905a001
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. Methods in Molecular Biology (Clifton, N.J.), 1762, 271–284. https://doi.org/10.1007/978-1-4939-7756-7_14
  • Radchenko, E. V., Rulev, Y. A., Safanyaev, A. Y., Palyulin, V. A., & Zefirov, N. S. (2017). Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Doklady. Biochemistry and Biophysics, 473(1), 128–131. https://doi.org/10.1134/S1607672917020107
  • da Rocha, M. N., Marinho, M. M., Teixeira, A. M. R., Marinho, E. S., & Silva dos Santos, H. (2022). Predictive ADMET study of rhodanine-3-acetic acid chalcone derivatives. Journal of the Indian Chemical Society, 99, 100535. https://doi.org/10.1016/j.jics.2022.100535
  • Rose, A. S., Bradley, A. R., Valasatava, Y., Duarte, J. M., Prlic, A., & Rose, P. W. (2018). NGL viewer: Web-based molecular graphics for large complexes. Bioinformatics (Oxford, England), 34(21), 3755–3758. https://doi.org/10.1093/bioinformatics/bty419
  • Sadananda, T. S., Nirupama, R., Chaithra, K., Govindappa, M., Chandrappa, C. P., & Vinay Raghavendra, B. (2011). Antimicrobial and antioxidant activities of endophytes from tabebuia argentea and identification of anticancer agent (lapachol). Journal of Medicinal Plants Research, 5, 3643–3652.
  • Santana, T. d., & de Menezes, J. F. S. (2020). The chemistry of europium and terbium lanthanides: A contextualized workshop in technical teaching. Brazilian Journal of Development, 6(12), 95106–95125. https://doi.org/10.34117/bjdv6n12-120
  • Shityakov, S., & Foerster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry, 2014(7), 23-36. https://doi.org/10.2147/AABC.S63749
  • Sieghart, W., & Savic, M. M. (2018). International union of basic and clinical pharmacology. CVI: GABAA receptor subtype-and function-selective ligands: Key issues in translation to humans. Pharmacological Reviews, 70(4), 836–878. https://doi.org/10.1124/PR.117.014449
  • Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABAA receptors. The Journal of Biological Chemistry, 287(48), 40224–40231. https://doi.org/10.1074/jbc.R112.386664
  • Silva Mendes, F. R., Wlisses da Silva, A., Amâncio Ferreira, M. K., de Lima Rebouças, E., Marinho, E. M., Marinho, M. M., Bandeira, P. N., Rodrigues Teixeira, A. M., Silva Alencar de Menezes, J. E., Alves de Siqueira, E., Róseo Paula Pessoa Bezerra de Menezes, R., Marinho, E. S., & Silva dos Santos, H. (2022). GABAA receptor participation in anxiolytic and anticonvulsant effects of (E)-3-(furan-2-yl)-1-(2hydroxy-3,4,6-trimethoxyphenyl)prop-2-en-1-one in adult zebrafish. Neurochemistry International, 155, 105303. https://doi.org/10.1016/j.neuint.2022.105303
  • Silva, J., Marinho, E. M., Marinho, M. M., Marinho, E. S., dos Santos, H. S., & da Rocha, M. N. (2021). Evaluation of the ADME, toxicological analysis and molecular docking studies of the anacardic acid derivatives with potential antibacterial effects against Staphylococcus aureus. Journal of Analytical & Pharmaceutical Research, 10, 177–194., https://doi.org/10.15406/japlr.2021.10.00384
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2016). Central nervous system multiparameter optimization desirability: Application in drug discovery. ACS Chemical Neuroscience, 7(6), 767–775. https://doi.org/10.1021/acschemneuro.6b00029
  • Yan, J., Zhang, G., Pan, J., & Wang, Y. (2014). α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. International Journal of Biological Macromolecules, 64, 213–223. https://doi.org/10.1016/j.ijbiomac.2013.12.007
  • Yan, M. Z., Chang, Q., Zhong, Y., Xiao, B. X., Feng, L., Cao, F. R., Le Pan, R., Zhang, Z. S., Liao, Y. H., & Liu, X. M. (2015). Lotus leaf alkaloid extract displays sedative-hypnotic and anxiolytic effects through GABAA receptor. Journal of Agricultural and Food Chemistry, 63(42), 9277–9285. https://doi.org/10.1021/acs.jafc.5b04141
  • Yang, Y., Nam, S., & Lee, W. Y. (2018). Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence ethanol biosensor based on ionic liquid doped titania-Nafion composite film. Microchemical Journal, 142, 62–69. https://doi.org/10.1016/j.microc.2018.06.016
  • Yu, K., Geng, X., Chen, M., Zhang, J., Wang, B., Ilic, K., & Tong, W. (2014). High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 42(4), 744–750. https://doi.org/10.1124/dmd.113.056267
  • Yusuf, D., Davis, A. M., Kleywegt, G. J., & Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48(7), 1411–1422. https://doi.org/10.1021/ci800084x
  • Zheng, M., Luo, X., Shen, Q., Wang, Y., Du, Y., Zhu, W., & Jiang, H. (2009). Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics (Oxford, England), 25(10), 1251–1258. https://doi.org/10.1093/bioinformatics/btp140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.