212
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, anticancer activity, molecular docking and molecular dynamics studies of some pyrazole–chalcone hybrids

, , , , , , , , & ORCID Icon show all
Pages 1381-1391 | Received 09 Nov 2022, Accepted 31 Mar 2023, Published online: 18 Apr 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahamad, S., Hassan, M. I., & Dwivedi, N. (2018). Designing of phenol-based β− carbonic anhydrase1 inhibitors through qsar, molecular docking, and md simulation approach. 3 Biotech, 8(5), 256. https://doi.org/10.1007/s13205-018-1278-z
  • Ahamad, S., Islam, A., Ahmad, F., Dwivedi, N., & Hassan, M. I. (2019). 2/3d-qsar, molecular docking and md simulation studies of ftsz protein targeting benzimidazoles derivatives. Computational Biology and Chemistry, 78, 398–413. https://doi.org/10.1016/j.compbiolchem.2018.12.017
  • Bandgar, B. P., Gawande, S. S., Bodade, R. G., Gawande, N. M., & Khobragade, C. N. (2009). Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorganic & Medicinal Chemistry, 17(24), 8168–8173. https://doi.org/10.1016/j.bmc.2009.10.035
  • Becerra, D., Abonia, R., & Castillo, J.-C. (2022). Recent applications of the multicomponent synthesis for bioactive pyrazole derivatives. Molecules, 27(15), 4723. https://doi.org/10.3390/molecules27154723
  • Bowers, W. S., & Sugiyama, T. (1993). Pyrazole-containing juvenile hormone mimics for pest control. Google Patents.
  • Daina, A., Michielin, O., & Zoete, V. (2017). Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 13. https://doi.org/10.1038/srep42717
  • DeLano, W. L. (2002). Pymol.
  • Fischer, P. M., & Lane, D. P. (2000). Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics. Current Medicinal Chemistry, 7(12), 1213–1245. https://doi.org/10.2174/0929867003374048
  • Fustero, S., Sanchez-Rosello, M., Barrio, P., & Simon-Fuentes, A. (2011). From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chemical Reviews, 111(11), 6984–7034. https://doi.org/10.1021/cr2000459
  • Gao, F., Huang, G., & Xiao, J. (2020). Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure‐activity relationship. Medicinal Research Reviews, 40(5), 2049–2084. https://doi.org/10.1002/med.21698
  • Hawash, M. M., Kahraman, D. C., Eren, F., Atalay, R. C., & Baytas, S. N. (2017). Synthesis and biological evaluation of novel pyrazolic chalcone derivatives as novel hepatocellular carcinoma therapeutics. European Journal of Medicinal Chemistry, 129, 12–26. https://doi.org/10.1016/j.ejmech.2017.02.002
  • Huang, S., Lin, R., Yu, Y., Lu, Y., Connolly, P. J., Chiu, G., Li, S., Emanuel, S. L., & Middleton, S. A. (2007). Synthesis of 3-(1h-benzimidazol-2-yl)-5-isoquinolin-4-ylpyrazolo [1, 2-b] pyridine, a potent cyclin dependent kinase 1 (cdk1) inhibitor. Bioorganic & Medicinal Chemistry Letters, 17(5), 1243–1245. https://doi.org/10.1016/j.bmcl.2006.12.031
  • Insuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A., & Cobo, J. (2010). Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4, 5-dihydro-1h-pyrazol-5-yl)-1-phenyl-1h-pyrazole derivatives as potential antitumor agents. Bioorganic & Medicinal Chemistry, 18(14), 4965–4974. https://doi.org/10.1016/j.bmc.2010.06.013
  • Kamran, M. Z., & Gude, R. P. (2012). Preclinical evaluation of the antimetastatic efficacy of pentoxifylline on a375 human melanoma cell line. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 66(8), 617–626. https://doi.org/10.1016/j.biopha.2012.03.006
  • Keller, T. H., Pichota, A., & Yin, Z. (2006). A practical view of ‘druggability. Current Opinion in Chemical Biology, 10(4), 357–361. https://doi.org/10.1016/j.cbpa.2006.06.014
  • Khan, M. F., Alam, M. M., Verma, G., Akhtar, W., Akhter, M., & Shaquiquzzaman, M. (2016). The therapeutic voyage of pyrazole and its analogs: A review. European Journal of Medicinal Chemistry, 120, 170–201. https://doi.org/10.1016/j.ejmech.2016.04.077
  • Li, M.-M., Huang, H., Pu, Y., Tian, W., Deng, Y., & Lu, J. (2022). A close look into the biological and synthetic aspects of fused pyrazole derivatives. European Journal of Medicinal Chemistry, 243, 114739. https://doi.org/10.1016/j.ejmech.2022.114739
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/s1056-8719(00)00107-6
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Medina-Leyte, D. J., Domínguez-Pérez, M., Mercado, I., Villarreal-Molina, M. T., & Jacobo-Albavera, L. (2020). Use of human umbilical vein endothelial cells (huvec) as a model to study cardiovascular disease: A review. Applied Sciences, 10(3), 938. https://doi.org/10.3390/app10030938
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). Pkcsm: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rai, U. S., Isloor, A. M., Shetty, P., Pai, K., & Fun, H.-K. (2015). Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents. Arabian Journal of Chemistry, 8(3), 317–321. https://doi.org/10.1016/j.arabjc.2014.01.018
  • Reddy, V. G., Reddy, T. S., Nayak, V. L., Prasad, B., Reddy, A. P., Ravikumar, A., Taj, S., & Kamal, A. (2016). Design, synthesis and biological evaluation of n-((1-benzyl-1h-1, 2, 3-triazol-4-yl) methyl)-1, 3-diphenyl-1h-pyrazole-4-carboxamides as cdk1/cdc2 inhibitors. European Journal of Medicinal Chemistry, 122, 164–177. https://doi.org/10.1016/j.ejmech.2016.06.011
  • Rhim, J. S., Tsai, W., Chen, Z., Chen, Z., Van Waes, C., Burger, A. M., & Lautenberger, J. A. (1998). A human vascular endothelial cell model to study angiogenesis and tumorigenesis. Carcinogenesis, 19(4), 673–681. https://doi.org/10.1093/carcin/19.4.673
  • Ritchie, T. J., Ertl, P., & Lewis, R. (2011). The graphical representation of adme-related molecule properties for medicinal chemists. Drug Discovery Today, 16(1–2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). Prodrg: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Singh, A. K., Sidhu, G. S., Deepa, T., & Maheshwari, R. K. (1996). Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Letters, 107(1), 109–115. https://doi.org/10.1016/0304-3835(96)04357-1
  • Soltan, O. M., Shoman, M. E., Abdel-Aziz, S. A., Narumi, A., Konno, H., & Abdel-Aziz, M. (2021). Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. European Journal of Medicinal Chemistry, 225, 113768. https://doi.org/10.1016/j.ejmech.2021.113768
  • Sun, J., Lv, X.-H., Qiu, H.-Y., Wang, Y.-T., Du, Q.-R., Li, D.-D., Yang, Y.-H., & Zhu, H.-L. (2013). Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel cdks inhibitors. European Journal of Medicinal Chemistry, 68, 1–9. https://doi.org/10.1016/j.ejmech.2013.07.003
  • Trott, O., & Olson, A. J. (2010). Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). Gromacs: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, Y., Shi, W., Wu, C., Wan, L., Zhao, Y., Zhang, C., Gu, W., & Wang, S. (2021). Pyrazole ring-containing isolongifolanone derivatives as potential cdk2 inhibitors: Evaluation of anticancer activity and investigation of action mechanism. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 139, 111663. https://doi.org/10.1016/j.biopha.2021.111663
  • Wyatt, P. G., Woodhead, A. J., Berdini, V., Boulstridge, J. A., Carr, M. G., Cross, D. M., Davis, D. J., Devine, L. A., Early, T. R., Feltell, R. E., Lewis, E. J., McMenamin, R. L., Navarro, E. F., O'Brien, M. A., O'Reilly, M., Reule, M., Saxty, G., Seavers, L. C. A., Smith, D.-M., … Woolford, A. J.-A. (2008). Identification of n-(4-piperidinyl)-4-(2, 6-dichlorobenzoylamino)-1 h-pyrazole-3-carboxamide (at7519), a novel cyclin dependent kinase inhibitor using fragment-based x-ray crystallography and structure based drug design. Journal of Medicinal Chemistry, 51(16), 4986–4999. https://doi.org/10.1021/jm800382h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.