170
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Water network chemistry to exploit the nature of catalytic water molecules in Mtb DNA gyrase: a computational study to understand the binding mechanism of fluoroquinolones

&
Pages 725-733 | Received 23 Sep 2022, Accepted 17 Mar 2023, Published online: 25 Apr 2023

References

  • Abel, R., Young, T., Farid, R., Berne, B. J., & Friesner, R. A. (2008). Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. Journal of the American Chemical Society, 130(9), 2817–2831. https://doi.org/10.1021/ja0771033
  • Barillari, C., Taylor, J., Viner, R., & Essex, J. W. (2007). Classification of water molecules in protein binding sites. Journal of the American Chemical Society, 129(9), 2577–2587. https://doi.org/10.1021/ja066980q
  • Beard, H., Cholleti, A., Pearlman, D., Sherman, W., & Loving, K. A. (2013). Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes. PloS One, 8(12), e82849. https://doi.org/10.1371/journal.pone.0082849
  • Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., Van Der Spoel, D., Xu, Y., & Garcia, A. E. (2016). Water determines the structure and dynamics of proteins. Chemical Reviews, 116(13), 7673–7697. https://doi.org/10.1021/acs.chemrev.5b00664
  • Blower, T. R., Williamson, B. H., Kerns, R. J., & Berger, J. M. (2016). Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 113(7), 1706–1713. https://doi.org/10.1073/pnas.1525047113
  • Breiten, B., Heroux, A., Lockett, M., Sherman, W., Fujita, S., Al-Sayah, M., Lange, H., Bowers, C., Krilov, G., & Whitesides, G. (2013). Water networks contribute to enthalpy/entropy compensation in protein and# 8722; ligand binding. Jouranl of American Chemical Society, 135, 102587.
  • Bucher, D., Stouten, P., & Triballeau, N. (2018). Shedding light on important waters for drug design: Simulations versus grid-based methods. Journal of Chemical Information and Modeling, 58(3), 692–699. https://doi.org/10.1021/acs.jcim.7b00642
  • Coni, P., Piras, M., Mateddu, A., Piludu, M., Orru, G., Scano, A., Cabras, T., Piras, V., Lachowicz, J. I., Jaremko, M., Faa, G., Castagnola, M., & Pichiri, G. (2020). Thymosin β4 cytoplasmic/nuclear translocation as a new marker of cellular stress. A Caco2 case study. RSC Advances, 10(21), 12680–12688. https://doi.org/10.1039/C9RA10365A
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Fox, J. M., Kang, K., Sastry, M., Sherman, W., Sankaran, B., Zwart, P. H., & Whitesides, G. M. (2017). Water‐restructuring mutations can reverse the thermodynamic signature of ligand binding to human carbonic anhydrase. Angewandte Chemie, 129(14), 3891–3895. https://doi.org/10.1002/ange.201609409
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Geschwindner, S., Ulander, J., & Johansson, P. (2015). Ligand binding thermodynamics in drug discovery: Still a hot tip? Journal of Medicinal Chemistry, 58(16), 6321–6335. https://doi.org/10.1021/jm501511f
  • Glaziou, P. (2020). Predicted impact of the COVID-19 pandemic on global tuberculosis deaths in 2020. MedRxiv.
  • Homans, S. W. (2007). Water, water everywhere—Except where it matters? Drug Discovery Today, 12(13-14), 534–539. https://doi.org/10.1016/j.drudis.2007.05.004
  • Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025
  • Kijewska, M., Sharfalddin, A. A., Jaremko, Ł., Cal, M., Setner, B., Siczek, M., Stefanowicz, P., Hussien, M. A., Emwas, A. H., & Jaremko, M. (2021). Lossen rearrangement of p-toluenesulfonates of N-oxyimides in basic condition, theoretical study, and molecular docking. Frontiers in Chemistry, 9, 662533. https://doi.org/10.3389/fchem.2021.662533
  • Lachowicz, J. I., Jaremko, M., Jaremko, L., Pichiri, G., Coni, P., & Piludu, M. (2019). Metal coordination of thymosin β4: Chemistry and possible implications. Coordination Chemistry Reviews, 396, 117–123. https://doi.org/10.1016/j.ccr.2019.06.008
  • Lachowicz, J. I., Pichiri, G., Piludu, M., Fais, S., Orrù, G., Congiu, T., Piras, M., Faa, G., Fanni, D., Dalla Torre, G., Lopez, X., Chandra, K., Szczepski, K., Jaremko, L., Ghosh, M., Emwas, A.-H., Castagnola, M., Jaremko, M., Hannappel, E., & Coni, P. (2022). Thymosin β4 is an endogenous iron chelator and molecular switcher of ferroptosis. International Journal of Molecular Sciences, 23(1), 551. https://doi.org/10.3390/ijms23010551
  • Ladbury, J. E., Klebe, G., & Freire, E. (2010). Adding calorimetric data to decision making in lead discovery: A hot tip. Nature Reviews. Drug Discovery, 9(1), 23–27. https://doi.org/10.1038/nrd3054
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Maruri, F., Sterling, T. R., Kaiga, A. W., Blackman, A., van der Heijden, Y. F., Mayer, C., Cambau, E., & Aubry, A. (2012). A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. The Journal of Antimicrobial Chemotherapy, 67(4), 819–831. https://doi.org/10.1093/jac/dkr566
  • Mdluli, K., & Ma, Z. (2007). Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 7, 159–168.
  • Nakasako, M., Odaka, M., Yohda, M., Dohmae, N., Takio, K., Kamiya, N., & Endo, I. (1999). Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: Roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Biochemistry, 38(31), 9887–9898. https://doi.org/10.1021/bi982753s
  • Nucci, N. V., Pometun, M. S., & Wand, A. J. (2011). Site-resolved measurement of water-protein interactions by solution NMR. Nature Structural & Molecular Biology, 18(2), 245–249. https://doi.org/10.1038/nsmb.1955
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Ryckaert, J.-P., & Bellemans, A. (1978). Molecular dynamics of liquid alkanes. Faraday Discussions of the Chemical Society, 66, 95–106. https://doi.org/10.1039/dc9786600095
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schiebel, J., Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, T. E., Cavalli, A., Ostermann, A., Heine, A., & Klebe, G. (2018). Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nature Communications, 9(1), 15. https://doi.org/10.1038/s41467-018-05769-2
  • Schrödinger, LLC. (2019a). WaterMap. Schrodinder Release, 2019–2011.
  • Schrödinger, LLC. (2019b). Glide, Schrodinger. Schrodinder Release, 2019–2011.
  • Schrödinger, LLC. (2019c). LigPrep. Schrodinger Release, 2019–2011.
  • Schrödinger, LLC. (2019d). Maestro. Schrodinder Release, 2019–2011.
  • Schrödinger, LLC. (2019e). Maestro-Desmond interoperability tools. Schrodinder Release, 2019–2011.
  • Schrödinger, LLC (2019f). Protein Preparation Wizard. Schrodinger Release, 2019–2011.
  • Sirgel, F. A., Warren, R. M., Streicher, E. M., Victor, T. C., van Helden, P. D., & Böttger, E. C. (2012). gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. The Journal of Antimicrobial Chemotherapy, 67(5), 1088–1093. https://doi.org/10.1093/jac/dks033
  • Snyder, P. W., Mecinović, J., Moustakas, D. T., Thomas, S. W., Harder, M., Mack, E. T., Lockett, M. R., Héroux, A., Sherman, W., & Whitesides, G. M. (2011). Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proceedings of the National Academy of Sciences of the United States of America, 108(44), 17889–17894. https://doi.org/10.1073/pnas.1114107108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.