175
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Biophysical insights on the interaction of anticoagulant drug dicoumarol with calf thymus-DNA: deciphering the binding mode and binding force with thermodynamics

, , , , &
Pages 1392-1403 | Received 13 Sep 2022, Accepted 31 Mar 2023, Published online: 10 Apr 2023

References

  • Al-Majedy, Y., Al-Amiery, A., Kadhum, A. A., & BakarMohamad, A. (2016). Anti-oxidant activity of coumarins. Systematic Reviews in Pharmacy, 8(1), 24–30. https://doi.org/10.5530/srp.2017.1.6
  • Aras, D., Cinar, O., Cakar, Z., Ozkavukcu, S., & Can, A. (2016). Can dicoumarol be used as a gonad-safe anti-cancer agent: an in vitro and in vivo experimental study. Molecular Human Reproduction, 22(1), 57–67. https://doi.org/10.1093/molehr/gav065
  • Aziz, M., Ejaz, S. A., Zargar, S., Akhtar, N., Aborode, A. T., A. Wani, T., Batiha, G. E. S., Siddique, F., Alqarni, M., & Akintola, A. A. (2022). Deep learning and structure-based virtual screening for drug discovery against NEK7: A novel target for the treatment of cancer. Molecules, 27(13), 4098. https://doi.org/10.3390/molecules27134098
  • Barone, G., Terenzi, A., Lauria, A., Almerico, A. M., Leal, J. M., Busto, N., & Garcia, B. (2013). DNA-binding of nickel (II), copper (II) and zinc (II) complexes: Structure–affinity relationships. Coordination Chemistry Reviews, 257(19–20), 2848–2862. https://doi.org/10.1016/j.ccr.2013.02.023
  • Bera, R., Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2008). Studies on the interaction of isoxazolcurcumin with calf thymus DNA. International Journal of Biological Macromolecules, 42(1), 14–21. https://doi.org/10.1016/j.ijbiomac.2007.08.010
  • Bhattacharyya, S. S., Paul, S., De, A., Das, D., Samadder, A., Boujedaini, N., & Khuda-Bukhsh, A. R. (2011). Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: Cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target. Toxicology and Applied Pharmacology, 253(3), 270–281. https://doi.org/10.1016/j.taap.2011.04.010
  • Bilal, M. S., Ejaz, S. A., Zargar, S., Akhtar, N., Wani, T. A., Riaz, N., Aborode, A. T., Siddique, F., Altwaijry, N., Alkahtani, H. M., & Umar, H. I. (2022). Computational investigation of 1, 3, 4 oxadiazole derivatives as lead inhibitors of VEGFR 2 in comparison with EGFR: Density functional theory, molecular docking and molecular dynamics simulation studies. Biomolecules, 12(11), 1612. https://doi.org/10.3390/biom12111612
  • Bodapati, A. T. S., Sahoo, B. K., Ragaiahgari, S. R., Kandikonda, L., & Madku, S. R. (2022). Deciphering the nature of binding of dexlansoprazole with DNA: Biophysical and docking approaches. International Journal of Biological Macromolecules, 217, 1027–1036. https://doi.org/10.1016/j.ijbiomac.2022.07.177
  • Chemchem, M., Yahaya, I., Aydıner, B., Seferoğlu, N., Doluca, O., Merabet, N., & Seferoğlu, Z. (2018). A novel and synthetically facile coumarin-thiophene-derived Schiff base for selective fluorescent detection of cyanide anions in aqueous solution: Synthesis, anion interactions, theoretical study and DNA-binding properties. Tetrahedron, 74(48), 6897–6906. https://doi.org/10.1016/j.tet.2018.10.008
  • Dawoud, S. M. (2021). Synthesis and DNA binding study of Co (II) and V (IV) complexes with O, N, O tridentate 3-methoxysalicylaldehyde-semicarbazide based ligand. Journal of Physics: Conference Series, 1879(2), 022059. https://doi.org/10.1088/1742-6596/1879/2/022059
  • Ghosh, S., Kundu, P., Paul, B. K., & Chattopadhyay, N. (2014). Binding of an anionic fluorescent probe with calf thymus DNA and effect of salt on the probe–DNA binding: A spectroscopic and molecular docking investigation. RSC Adv, 4(108), 63549–63558. https://doi.org/10.1039/C4RA14298E
  • González-Ruiz, V., Olives, A. I., Martín, M. A., Ribelles, P., Ramos, M. T., & Menéndez, J. C. (2011). An overview of analytical techniques employed to evidence drug-DNA interactions. Applications to the design of genosensors. Biomedical Engineering, Trends, Research and Technologies, 32, 215–219. https://doi.org/10.5772/13586
  • Goswami, S., Ray, S., & Sarkar, M. (2016). Spectroscopic studies on the interaction of DNA with the copper complexes of NSAIDs lornoxicam and isoxicam. International Journal of Biological Macromolecules, 93(Pt A), 47–56. https://doi.org/10.1016/j.ijbiomac.2016.08.025
  • Hamdi, N., Puerta, M. C., & Valerga, P. (2008). Synthesis, structure, antimicrobial and anti-oxidant investigations of dicoumarol and related compounds. European Journal of Medicinal Chemistry, 43(11), 2541–2548. https://doi.org/10.1016/j.ejmech.2008.03.038
  • Huang, S., Liang, Y., Huang, C., Su, W., Lei, X., Liu, Y., & Xiao, Q. (2016). Systematical investigation of binding interaction between novel ruthenium (II) arene complex with curcumin analogs and ctDNA. Luminescence : The Journal of Biological and Chemical Luminescence, 31(7), 1384–1394. https://doi.org/10.1002/bio.3119
  • Ikhlas, S., & Ahmad, M. (2018). Binding studies of guggulsterone-E to calf thymus DNA by multi-spectroscopic, calorimetric and molecular docking studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 190, 402–408. https://doi.org/10.1016/j.saa.2017.09.065
  • Ilkhani, H., Ganjali, M. R., Arvand, M., Hejazi, M. S., Azimi, F., & Norouzi, P. (2011). Electrochemical spectroscopic investigations on the interaction of an ytterbium complex with DNA and their analytical applications such as biosensor. International Journal of Biological Macromolecules, 49(5), 1117–1123. https://doi.org/10.1016/j.ijbiomac.2011.09.008
  • Jana, B., Senapati, S., Ghosh, D., Bose, D., & Chattopadhyay, N. (2012). Spectroscopic exploration of mode of binding of ctDNA with 3-hydroxyflavone: A contrast to the mode of binding with flavonoids having additional hydroxyl groups. The Journal of Physical Chemistry. B, 116(1), 639–645. https://doi.org/10.1021/jp2094824
  • Ji, C., Yin, X., Duan, H., & Liang, L. (2021). Molecular complexes of calf thymus DNA with various bioactive compounds: Formation and characterization. International Journal of Biological Macromolecules, 168, 775–783. https://doi.org/10.1016/j.ijbiomac.2020.11.135
  • Kashanian, S., Shariati, Z., Roshanfekr, H., & Ghobadi, S. (2012). DNA binding studies of 3, 5, 6-trichloro-2-pyridinol pesticide metabolite. DNA and Cell Biology, 31(7), 1341–1348. https://doi.org/10.1089/dna.2012.1662
  • Kecel-Gunduz, S., Budama-Kilinc, Y., Bicak, B., Gok, B., Belmen, B., Aydogan, F., & Yolacan, C. (2023). New coumarin derivative with potential antioxidant activity: Synthesis, DNA binding and in silico studies (Docking, MD, ADMET). Arabian Journal of Chemistry, 16(2), 104440. https://doi.org/10.1016/j.arabjc.2022.104440
  • Khayyat, A. I. A., Zargar, S., Wani, T. A., Rehman, M. U., & Khan, A. A. (2022). Association mechanism and conformational changes in trypsin on its interaction with atrazine: A multi-spectroscopic and biochemical study with computational approach. International Journal of Molecular Sciences, 23(10), 5636. https://doi.org/10.3390/ijms23105636
  • Kumar, P., Baidya, B., Chaturvedi, S. K., Khan, R. H., Manna, D., & Mondal, B. (2011). DNA binding and nuclease activity of copper (II) complexes of tridentate ligands. Inorganica Chimica Acta, 376(1), 264–270. https://doi.org/10.1016/j.ica.2011.06.022
  • Latt, S. A., & Stetten, G. (1976). Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society, 24(1), 24–33. https://doi.org/10.1177/24.1.943439
  • Mallick, A., Haldar, B., & Chattopadhyay, N. (2005). Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6, 7-dihydro-12H indolo- [2, 3-a] quinolizine with serum albumins. The Journal of Physical Chemistry, B, 109(30), 14683–14690. https://doi.org/10.1021/jp051367z
  • Mirzaei-Kalar, Z. (2018). In vitro binding interaction of atorvastatin with calf thymus DNA: Multispectroscopic, gel electrophoresis and molecular docking studies. Journal of Pharmaceutical and Biomedical Analysis, 161, 101–109. https://doi.org/10.1016/j.jpba.2018.08.033
  • Mišković, K., Bujak, M., Baus Lončar, M., & Glavaš-Obrovac, L. (2013). Antineoplastic DNA-binding compounds: Intercalating and minor groove binding drugs. Arhiv za Higijenu Rada i Toksikologiju, 64(4), 593–602. https://doi.org/10.2478/10004-1254-64-2013-2371
  • Moghadam, N. H., Salehzadeh, S., & Shahabadi, N. (2017). Spectroscopic and molecular docking studies on the interaction of anti-viral drug nevirapine with calf thymus DNA. Nucleosides, Nucleotides & Nucleic Acids, 36(9), 553–570. https://doi.org/10.1080/15257770.2017.1346800
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Movahedi, E., Rezvani, A. R., & Razmazma, H. (2019). Binding interaction of a heteroleptic silver (I) complex with DNA: A joint experimental and computational study. International Journal of Biological Macromolecules, 126, 1244–1254. https://doi.org/10.1016/j.ijbiomac.2019.01.013
  • Prunkl, C., Pichlmaier, M., Winter, R., Kharlanov, V., Rettig, W., & Wagenknecht, H. A. (2010). Optical, redox, and DNA‐binding properties of phenanthridinium chromophores: elucidating the role of the phenyl substituent for fluorescence enhancement of ethidium in the presence of DNA. Chemistry (Weinheim an der Bergstrasse, Germany), 16(11), 3392–3402. https://doi.org/10.1002/chem.200902823
  • Ramana, M. M. V., Betkar, R., Nimkar, A., Ranade, P., Mundhe, B., & Pardeshi, S. (2015). In vitro DNA binding studies of antiretroviral drug nelfinavir using ethidium bromide as fluorescence probe. Journal of Photochemistry and Photobiology. B, Biology, 151, 194–200. https://doi.org/10.1016/j.jphotobiol.2015.08.012
  • Ramos, C. I., Almeida, S. P., Lourenço, L. M., Pereira, P. M., Fernandes, R., Faustino, M. A. F., Tomé, J. P., Carvalho, J., Cruz, C., & Neves, M. G. P. (2019). Multicharged phthalocyanines as selective ligands for G-quadruplex DNA structures. Molecules, 24(4), 733. https://doi.org/10.3390/molecules24040733
  • Rashed, K. N. Z. (2021). Biological evidences of dicoumarol: A review. Plantae Scientia, 4(2), 121–124. https://doi.org/10.32439/ps.v4i2.121-124
  • Rehman, S. U., Yaseen, Z., Husain, M. A., Sarwar, T., Ishqi, H. M., & Tabish, M. (2014). Interaction of 6 mercaptopurine with calf thymus DNA–deciphering the binding mode and photoinduced DNA damage. PLoS One, 9(4), e93913. https://doi.org/10.1371/journal.pone.0093913
  • Reichmann, M. E., Rice, S. A., Thomas, C. A., & Doty, P. (1954). A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society, 76(11), 3047–3053. https://doi.org/10.1021/ja01640a067
  • Ren, Q. C., Gao, C., Xu, Z., Feng, L. S., Liu, M. L., Wu, X., & Zhao, F. (2018). Bis-coumarin derivatives and their biological activities. Current Topics in Medicinal Chemistry, 18(2), 101–113. https://doi.org/10.2174/1568026618666180221114515
  • Ricci, C. G., & Netz, P. A. (2009). Docking studies on DNA-ligand interactions: Building and application of a protocol to identify the binding mode. Journal of Chemical Information and Modeling, 49(8), 1925–1935. https://doi.org/10.1021/ci9001537
  • Roy, D., Puttreddy, R., Rissanen, K., Chakraborty, A., & Ghosh, R. (2022). Synthesis, crystal structure and metal ion sensing ability of novel 4-amino-3-nitroso-2H-chromen-2-one: Interaction studies with calf thymus-DNA. Journal of Molecular Structure, 1264, 133334. https://doi.org/10.1016/j.molstruc.2022.133334
  • Sahoo, B. K., Ghosh, K. S., Bera, R., & Dasgupta, S. (2008). Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chemical Physics, 351(1–3), 163–169. https://doi.org/10.1016/j.chemphys.2008.05.008
  • Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: spectroscopic and molecular modeling studies. Biopolymers, 91(2), 108–119. https://doi.org/10.1002/bip.21092
  • Sarkar, D., Das, P., Basak, S., & Chattopadhyay, N. (2008). Binding interaction of cationic phenazinium dyes with calf thymus DNA: A comparative study. The Journal of Physical Chemistry, B, 112(30), 9243–9249. https://doi.org/10.1021/jp801659d
  • Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies. International Journal of Biological Macromolecules, 73, 9–16. https://doi.org/10.1016/j.ijbiomac.2014.10.017
  • Scaria, P. V., & Shafer, R. H. (1991). Binding of ethidium bromide to a DNA triple helix. Evidence for intercalation. The Journal of Biological Chemistry, 266(9), 5417–5423. https://doi.org/10.1016/S0021-9258(19)67611-8
  • Sengupta, C., & Basu, S. (2015). A spectroscopic study to decipher the mode of interaction of some common acridine derivatives with CT DNA within nanosecond and femtosecond time domains. RSC Advances, 5(95), 78160–78171. https://doi.org/10.1039/C5RA13035B
  • Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnology Reports (Amsterdam, Netherlands), 30, e00615. https://doi.org/10.1016/j.btre.2021.e00615
  • Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2022). Green synthesis, in vitro cytotoxicity, antioxidant activity and interaction studies of CuO nanoparticles with DNA, serum albumin, hemoglobin and lysozyme. ChemistrySelect, 7(37), e202202916. https://doi.org/10.1002/slct.202202916
  • Shi, J. H., Liu, T. T., Jiang, M., Chen, J., & Wang, Q. (2015). Characterization of interaction of calf thymus DNA with gefitinib: Spectroscopic methods and molecular docking. Journal of Photochemistry and Photobiology. B, Biology, 147, 47–55. https://doi.org/10.1016/j.jphotobiol.2015.03.005
  • Silva, M. M., Nascimento, E. O. O., Silva, E. F., Araújo, J. X. D., Santana, C. C., Grillo, L. A. M., de Oliveira, R. S., R R Costa, P., Buarque, C. D., Santos, J. C. C., & Figueiredo, I. M. (2017). Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: Spectroscopic approach, electrophoresis and theoretical studies. International Journal of Biological Macromolecules, 96, 223–233. https://doi.org/10.1016/j.ijbiomac.2016.12.044
  • Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology. B, Biology, 124, 1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013
  • Sowrirajan, C., Yousuf, S., & Enoch, I. V. (2014). The unusual fluorescence quenching of Coumarin 314 by β-cyclodextrin and the effect of β-cyclodextrin on its binding with calf thymus DNA. Australian Journal of Chemistry, 67(2), 256–265. https://doi.org/10.1071/CH13364
  • Stokke, T., & Steen, H. B. (1985). Multiple binding modes for Hoechst 33258 to DNA. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society, 33(4), 333–338. https://doi.org/10.1177/33.4.2579998
  • Suh, D., & Chaires, J. B. (1995). Criteria for the mode of binding of DNA binding agents. Bioorganic & Medicinal Chemistry, 3(6), 723–728. https://doi.org/10.1016/0968-0896(95)00053-J
  • Sun, Y., Peng, T., Zhao, L., Jiang, D., & Cui, Y. (2014). Studies of interaction between two alkaloids and double helix DNA. Journal of Luminescence, 156, 108–115. https://doi.org/10.1016/j.jlumin.2014.07.014
  • Tabassum, S., Amir, S., Arjmand, F., Pettinari, C., Marchetti, F., Masciocchi, N., Lupidi, G., & Pettinari, R. (2013). Mixed-ligand Cu (II)–vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anti-cancer activity. European Journal of Medicinal Chemistry, 60, 216–232. https://doi.org/10.1016/j.ejmech.2012.08.019
  • Tanzadehpanah, H., Mahaki, H., Samadi, P., Karimi, J., Moghadam, N. H., Salehzadeh, S., Dastan, D., & Saidijam, M. (2019). Anti-cancer activity, calf thymus DNA and human serum albumin binding properties of Farnesiferol C from Ferula pseudalliacea. Journal of Biomolecular Structure & Dynamics, 37(11), 2789–2800. https://doi.org/10.1080/07391102.2018.1497543
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Usman, A., & Ahmad, M. (2017). Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies. Chemosphere, 181, 536–543. https://doi.org/10.1016/j.chemosphere.2017.04.115
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://www.ebi.ac.uk/thornton-srv/software/LigPlus/. https://doi.org/10.1093/protein/8.2.127
  • Wani, T. A., Alanazi, M. M., Alsaif, N. A., Bakheit, A. H., Zargar, S., Alsalami, O. M., & Khan, A. A. (2022a). Interaction characterization of a tyrosine kinase inhibitor erlotinib with a model transport protein in the presence of quercetin: A drug–protein and drug–drug interaction investigation using multi-spectroscopic and computational approaches. Molecules, 27(4), 1265. https://doi.org/10.3390/molecules27041265
  • Wani, T. A., Alsaif, N. A., Alanazi, M. M., Bakheit, A. H., Khan, A. A., & Zargar, S. (2021a). Binding of colchicine and ascorbic acid (vitamin C) to bovine serum albumin: An in-vitro interaction study using multispectroscopic, molecular docking and molecular dynamics simulation study. Journal of Molecular Liquids, 342, 117542. https://doi.org/10.1016/j.molliq.2021.117542
  • Wani, T. A., Alsaif, N., Alanazi, M. M., Bakheit, A. H., Zargar, S., & Bhat, M. A. (2021b). A potential anti-cancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 158, 105686. https://doi.org/10.1016/j.ejps.2020.105686
  • Wani, T. A., Alsaif, N., Bakheit, A. H., Zargar, S., Al-Mehizia, A. A., & Khan, A. A. (2020). Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorganic Chemistry, 100, 103957. https://doi.org/10.1016/j.bioorg.2020.103957
  • Wani, T. A., Bakheit, A. H., Zargar, S., & Alamery, S. (2022b). Mechanistic competitive binding interaction study between olmutinib and colchicine with model transport protein using spectroscopic and computer simulation approaches. Journal of Photochemistry and Photobiology A: Chemistry, 426, 113794. https://doi.org/10.1016/j.jphotochem.2022.113794
  • Wani, T. A., Bakheit, A. H., Zargar, S., Khayyat, A. I. A., & Al-Majed, A. A. (2022c). Influence of rutin, sinapic acid, and naringenin on binding of tyrosine kinase inhibitor erlotinib to bovine serum albumin using analytical techniques along with computational approach. Applied Sciences, 12(7), 3575. https://doi.org/10.3390/app12073575
  • Ward, L. D. (1985). Measurement of ligand binding to proteins by fluorescence spectroscopy. Methods in Enzymology, 117, 400–414. https://doi.org/10.1016/S0076-6879(85)17024-2
  • Weber, G., & Young, L. B. (1964). Fragmentation of bovine serum albumin by pepsin: I. The origin of the acid expansion of the albumin molecule. The Journal of Biological Chemistry, 239(5), 1415–1423. https://doi.org/10.1016/S0021-9258(18)91331-1
  • Welch, R. M. (1973). A method for studying the interactions of drugs with bishydroxycoumarin (dicoumarol) in dogs. Annals of the New York Academy of Sciences, 226(1), 259–266. https://doi.org/10.1111/j.1749-6632.1973.tb20487.x
  • Zargar, S., & Wani, T. A. (2021). Exploring the binding mechanism and adverse toxic effects of persistent organic pollutant (dicofol) to human serum albumin: A biophysical, biochemical and computational approach. Chemico-Biological Interactions, 350, 109707. https://doi.org/10.1016/j.cbi.2021.109707
  • Zargar, S., Wani, T. A., Alsaif, N. A., & Khayyat, A. I. A. (2022). A comprehensive investigation of interactions between antipsychotic drug quetiapine and human serum albumin using multi-spectroscopic, biochemical, and molecular modeling approaches. Molecules, 27(8), 2589. https://doi.org/10.3390/molecules27082589
  • Zhang, G., Fu, P., Wang, L., & Hu, M. (2011). Molecular spectroscopic studies of farrerol interaction with calf thymus DNA. Journal of Agricultural and Food Chemistry, 59(16), 8944–8952. https://doi.org/10.1021/jf2019006
  • Zhang, G., Wang, L., Zhou, X., Li, Y., & Gong, D. (2014). Binding characteristics of sodium saccharin with calf thymus DNA in vitro. Journal of Agricultural and Food Chemistry, 62(4), 991–1000. https://doi.org/10.1021/jf405085g
  • Zhang, C. L., Zhang, X. M., Liu, W., Chen, S., & Le, X. Y. (2018). A copper (II) complex of 6-(pyrazin-2-yl)-1, 3, 5-triazine-2, 4-diamine and L-serinate: Synthesis, crystal structure, DNA-binding and molecular docking studies. Transition Metal Chemistry, 43(3), 201–209. https://doi.org/10.1007/s11243-017-0200-6
  • Zhang, G., Zhang, Y., Zhang, Y., & Li, Y. (2013). Spectroscopic studies of cyanazine binding to calf thymus DNA with the use of ethidium bromide as a probe. Sensors and Actuators B: Chemical, 182, 453–460. https://doi.org/10.1016/j.snb.2013.03.038
  • Zhou, B., Zhou, H., Xu, L., Cai, R., Chen, C., Chi, B., & Tuo, X. (2022). An insight into the interaction between Indisulam and human serum albumin: Spectroscopic method, computer simulation and in vitro cytotoxicity assay. Bioorganic Chemistry, 127, 106017. https://doi.org/10.1016/j.bioorg.2022.106017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.