509
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification and mechanistic exploration of structural and conformational dynamics of NF-kB inhibitors: rationale insights from in silico and in vitro studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1485-1505 | Received 06 Jan 2023, Accepted 02 Apr 2023, Published online: 13 Apr 2023

References

  • Abbasi, M., Mahboubi-Rabbani, M., Kashfi, K., & Sadeghi-Aliabadi, H. (2023). Prediction of dual NF-κB/IκB inhibitors using an integrative in-silico approaches. Journal of Biomolecular Structure and Dynamics, 15, 1–15. https://doi.org/10.1080/07391102.2023.2178507
  • Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amaral, M., Kokh, D.B., Bomke, J., Wegener, A., Buchstaller, H.P., Eggenweiler, H.M., Matias, P., Sirrenberg, C., Wade, R.C., & Frech, M. J. N. C. (2017). Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nature Communications, 8(1), 2276. https://doi.org/10.1038/s41467-017-02258-w
  • Armstrong, A.W., & Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA, 323(19), 1945–1960. https://doi.org/10.1001/jama.2020.4006
  • Barnes, P.J., & Karin, M. (1997). Nuclear factor-kB: A pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine, 336(15), 1066–1071. https://doi.org/10.1056/nejm199704103361506
  • Baumgart, D.C., Misery, L., Naeyaert, S., & Taylor, P.C. (2019). Biological therapies in immune-mediated inflammatory diseases: Can biosimilars reduce access inequities? Frontiers in Pharmacology, 10, 279. https://doi.org/10.3389/fphar.2019.00279
  • Benet, L.Z., Hosey, C.M., Ursu, O., & Oprea, T.I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Berendsen, H.J.C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bhakat, S., & Söderhjelm, P. (2022). Flap dynamics in pepsin-like aspartic proteases: A computational perspective using Plasmepsin-II and BACE-1 as model systems. Journal of Chemical Information and Modeling, 62(4), 914–926. https://doi.org/10.1021/acs.jcim.1c00840
  • Blaser, H., Dostert, C., Mak, T.W., & Brenner, D. (2016). TNF and ROS crosstalk in inflammation. Trends in Cell Biology, 26(4), 249–261. https://doi.org/10.1016/j.tcb.2015.12.002
  • Bochevarov, A.D., Harder, E., Hughes, T.F., Greenwood, J.R., Braden, D.A., Philipp, D.M., Rinaldo, D., Halls, M.D., Zhang, J., & Friesner, R.A. (2013). Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 113(18), 2110–2142. https://doi.org/10.1002/qua.24481
  • Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., & Salmon, J.K. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on supercomputing (SC06), IEEE 43. https://doi.org/10.1109/SC.2006.54
  • Brown, D.G., & Wobst, H.J. (2021). A decade of FDA-approved drugs (2010-2019): Trends and future directions. Journal of Medicinal Chemistry, 64(5), 2312–2338. https://doi.org/10.1021/acs.jmedchem.0c01516
  • Changeux, J.P., & Edelstein, S.J. (2005). Allosteric mechanisms of signal transduction. Science, 308(5727), 1424–1428. https://doi.org/10.1126/science.abl4784
  • ChemFaces Flavonoids Compound Library. (2022). https://www.chemfaces.com/.
  • Chen, H., Lu, C., Liu, H., Wang, M., Zhao, H., Yan, Y., & Han, L. (2017). Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. International Immunopharmacology, 48, 110–117. https://doi.org/10.1016/j.intimp.2017.04.022
  • Chen, J., Zeng, Q., Wang, W., Sun, H., & Hu, G. (2022). Decoding the identification mechanism of an SAM-III riboswitch on ligands through multiple independent gaussian-accelerated molecular dynamics simulations. Journal of Chemical Information and Modeling, 62(23), 6118–6132. https://doi.org/10.1021/acs.jcim.2c00961
  • Chen, J., Zhang, S., Wang, W., Pang, L., Zhang, Q., & Liu, X. (2021). Mutation-induced impacts on the switch transformations of the GDP- and GTP-bound K-Ras: Insights from multiple replica gaussian accelerated molecular dynamics and free energy analysis. Journal of Chemical Information and Modeling, 61(4), 1954–1969. https://doi.org/10.1021/acs.jcim.0c01470
  • Chiricozzi, A., Guttman-Yassky, E., Suárez-Fariñas, M., Nograles, K.E., Tian, S., Cardinale, I., Chimenti, S., & Krueger, J.G. (2011). Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. The Journal of Investigative Dermatology, 131(3), 677–687. https://doi.org/10.1038/jid.2010.340
  • Cho, J.W., Lee, K.S., & Kim, C.W. (2007). Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. International Journal of Molecular Medicine, 19(3), 469–474. https://doi.org/10.3892/ijmm.19.3.469
  • DeFelice, M.M., Clark, H.R., Hughey, J.J., Maayan, I., Kudo, T., Gutschow, M.V., Covert, M.W., & Regot, S. (2019). NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop. Science Signaling, 12(579), 1–12. https://doi.org/10.1126/scisignal.aau3568
  • DeLano, W.L. (2002). The PyMOL molecular graphics system. Version 2.5. DeLano Scientific. https://pymol.org/
  • Fakhar, Z., Govender, T., Maguire, G.E., Lamichhane, G., Walker, R.C., Kruger, H.G., & Honarparvar, B. (2017). Differential flap dynamics in l,d-transpeptidase2 from Mycobacterium tuberculosis revealed by molecular dynamics. Molecular bioSystems, 13(6), 1223–1234. https://doi.org/10.1039/C7MB00110J
  • Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., & Shenkin, P.S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., & Mainz, D.T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghosh, G., Duyne, G.V., Ghosh, S., & Sigler, P.B. (1995). Structure of NF-κB p50 homodimer bound to a κB site. Nature, 373(6512), 303–310. https://doi.org/10.1038/373303a0
  • Goldminz, A.M., Au, S.C., Kim, N., Gottlieb, A.B., & Lizzul, P.F. (2013). NF-κB: An essential transcription factor in psoriasis. Journal of Dermatological Science, 69(2), 89–94. https://doi.org/10.1016/j.jdermsci.2012.11.002
  • Gorai, S., Junghare, V., Kundu, K., Gharui, S., Kumar, M., Patro, B.S., Nayak, S.K., Hazra, S., & Mula, S. (2022). Synthesis of dihydrobenzofuro[3,2-b]chromenes as potential 3CLpro inhibitors of SARS-CoV-2: A molecular docking and molecular dynamics study. ChemMedChem, 17(8), e202100782. https://doi.org/10.1002/cmdc.202100782
  • Grant, B.J., Rodrigues, A.P., ElSawy, K.M., McCammon, J.A., & Caves, L.S. (2006). Bio3D: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Grant, B.J., Skjaerven, L., & Yao, X.-Q. (2021). The Bio3D packages for structural bioinformatics. Protein Science : A Publication of the Protein Society, 30(1), 20–30. https://doi.org/10.1002/pro.3923
  • Griffiths, C.E., Barker, J.N., Kunkel, S., & Nickoloff, B.J. (1991). Modulation of leucocyte adhesion molecules, a T-cell chemotaxin (IL-8) and a regulatory cytokine (TNF-α) in allergic contact dermatitis (rhus dermatitis). The British Journal of Dermatology, 124(6), 519–526. https://doi.org/10.1111/j.1365-2133.1991.tb04943.x
  • Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., & Banks, J.L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hayden, M.S., & Ghosh, S. (2014). Regulation of NF-κB by TNF family cytokines. Seminars in Immunology, 26(3), 253–266. https://doi.org/10.1016/j.smim.2014.05.004
  • Huang, D., & Caflisch, A. (2011). The free energy landscape of small molecule unbinding. PLoS Computational Biology, 7(2), e1002002. https://doi.org/10.1371/journal.pcbi.1002002
  • Huang, J.H., Huang, C.C., Fang, J.Y., Yang, C., Chan, C.M., Wu, N.L., Kang, S.W., & Hung, C.F. (2010). Protective effects of myricetin against ultraviolet-B-induced damage in human keratinocytes. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 24(1), 21–28. https://doi.org/10.1016/j.tiv.2009.09.015
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Interbioscreen Natural Compounds. (2022). https://www.ibscreen.com/natural-compounds/.
  • Joshi, N., Tripathi, D.K., Nagar, N., & Poluri, K.M. (2021). Hydroxyl groups on annular ring-B dictate the affinities of flavonol-CCL2 chemokine binding interactions. ACS Omega, 6(15), 10306–10317. https://doi.org/10.1021/acsomega.1c00655
  • Kanan, T., Kanan, D., Al Shardoub, E.J., & Durdagi, S. (2021). Transcription factor NF-κB as target for SARS-CoV-2 drug discovery efforts using inflammation-based QSAR screening model. Journal of Molecular Graphics & Modelling, 108, 107968. https://doi.org/10.1016/j.jmgm.2021.107968
  • Kim, J., & Krueger, J.G. (2015). The immunopathogenesis of psoriasis. Dermatologic Clinics, 33(1), 13–23. https://doi.org/10.1016/j.det.2014.09.002
  • Kohl, B., Granitzka, V., Singh, A., Quintas, P., Xiromeriti, E., Mörtel, F., Wright, P.E., Kroon, G., Dyson, H.J., & Stoll, R. (2019). Comparison of backbone dynamics of the p50 dimerization domain of NFκB in the homodimeric transcription factor NFκB1 and in its heterodimeric complex with RelA (p65). Protein Science : A Publication of the Protein Society, 28(12), 2064–2072. https://doi.org/10.1002/pro.3736
  • Kumar, V., Haldar, S., Das, N.S., Ghosh, S., Dhankhar, P., Sircar, D., & Roy, P. (2021). Pterostilbene-isothiocyanate inhibits breast cancer metastasis by selectively blocking IKK-β/NEMO interaction in cancer cells. Biochemical Pharmacology, 192, 114717. https://doi.org/10.1016/j.bcp.2021.114717
  • Lee da, H., & Lee, C.S. (2016). Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes. European Journal of Pharmacology, 784, 164–172. https://doi.org/10.1016/j.ejphar.2016.05.025
  • Lee, H.J., Im, A., Kim, S.M., Kang, H.S., Lee, J.D., & Chae, S. (2018). The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways. BMC Complementary and Alternative Medicine, 18(1), 39. https://doi.org/10.1186/s12906-017-2058-8
  • Lemster, B.H., Carroll, P.B., Rilo, H.R., Johnson, N., Nikaein, A., & Thomson, A.W. (1995). IL-8/IL-8 receptor expression in psoriasis and the response to systemic tacrolimus (FK506) therapy. Clinical and Experimental Immunology, 99(2), 148–154. https://doi.org/10.1111/j.1365-2249.1995.tb05525.x
  • Lin, W., Shen, P., Song, Y., Huang, Y., & Tu, S. (2021). Reactive oxygen species in autoimmune cells: Function, differentiation, and metabolism. Frontiers in Immunology, 12, 635021. https://doi.org/10.3389/fimmu.2021.635021
  • Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • Lipinski, C.A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • López, V., Pérez, S., Vinuesa, A., Zorzetto, C., & Abian, O. (2016). Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside. Food & Function, 7(4), 2107–2113. https://doi.org/10.1039/C5FO01586C
  • Machuca, C., Mendoza-Milla, C., Córdova, E., Mejía, S., Covarrubias, L., Ventura, J., & Zentella, A. (2006). Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT. BMC Cell Biology, 7(1), 9. https://doi.org/10.1186/1471-2121-7-9
  • Mendoza-Milla, C., Machuca, C., Córdova, E., Mejía, S., Covarrubias, L., Ventura, J., & Zentella, A. (2005). NF-kB activation but not PI3K/Akt is required for dexamethasone dependent protection against TNF-α cytotoxicity in L929 cells. BMC Cell Biology, 7, 9. https://doi.org/10.1016/j.febslet.2005.05.081
  • Mishra, S.K., & Jernigan, R.L. (2018). Protein dynamic communities from elastic network models align closely to the communities defined by molecular dynamics. PLoS One, 13(6), e0199225. https://doi.org/10.1371/journal.pone.0199225
  • Mukerjee, N., Das, A., Maitra, S., Ghosh, A., Khan, P., Alexiou, A., Dey, A., Baishya, D., Ahmad, F., Sachdeva, P., & Al-Muhanna, M.K. (2022). Dynamics of natural product Lupenone as a potential fusion inhibitor against the spike complex of novel Semliki Forest Virus. PLoS One, 17(2), e0263853. https://doi.org/10.1371/journal.pone.0263853
  • National Institutes of Health (NIH) Clinical Center. (2022a). https://clinicalstudies.info.nih.gov/.
  • National Institutes of Health (NIH) Clinical Trials Registry. (2022b). https://clinicaltrials.gov/.
  • Nikhil, K., Sharan, S., Palla, S.R., Sondhi, S.M., Peddinti, R.K., & Roy, P. (2015). Understanding the mode of action of a pterostilbene derivative as anti-inflammatory agent. International Immunopharmacology, 28(1), 10–21. https://doi.org/10.1016/j.intimp.2015.05.003
  • Páll, S., Zhmurov, A., Bauer, P., Abraham, M., Lundborg, M., Gray, A., Hess, B., & Lindahl, E. (2020). Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. The Journal of Chemical Physics, 153(13), 134110. https://doi.org/10.1063/5.0018516
  • Piccagli, L., Fabbri, E., Borgatti, M., Bezzerri, V., Mancini, I., Nicolis, E., Dechecchi, M.C., Lampronti, I., Cabrini, G., & Gambari, R. (2008). Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: Correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression. BMC Structural Biology, 8(1), 38. https://doi.org/10.1186/1472-6807-8-38
  • Raghuwanshi, A.S., Kumar, A., Raghuwanshi, N., Singh, S.K., Singh, A.K., Tripathi, U., Kaviraj, S., & Singh, S. (2021). Development of a process for large scale production of PfRH5 in E. coli expression system. International Journal of Biological Macromolecules, 188, 169–179. https://doi.org/10.1016/j.ijbiomac.2021.08.014
  • Raghuwanshi, N., Yadav, T.C., Srivastava, A.K., Raj, U., Varadwaj, P., & Pruthi, V. (2019). Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Materials Science & Engineering. C, Materials for Biological Applications, 95, 57–71. https://doi.org/10.1016/j.msec.2018.10.061
  • Ramadass, V., Vaiyapuri, T., & Tergaonkar, V. (2020). Small molecule NF-κB pathway inhibitors in clinic. International Journal of Molecular Sciences, 21(14), 5164. https://doi.org/10.3390/ijms21145164
  • Rasmi, R.R., Sakthivel, K.M., & Guruvayoorappan, C. (2020). NF-κB inhibitors in treatment and prevention of lung cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 130, 110569. https://doi.org/10.1016/j.biopha.2020.110569
  • Raza, T., Dhaka, N., Joseph, D., Dadhwal, P., Kakita, V.M.R., Atreya, H.S., & Mukherjee, S.P. (2021). Insights into the NF-κB-DNA interaction through NMR spectroscopy. ACS Omega, 6(19), 12877–12886. https://doi.org/10.1021/acsomega.1c01299
  • Reddy, A.T., Lakshmi, S.P., Prasad, E.M., Varadacharyulu, N.C., & Kodidhela, L.D. (2020). Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-kB. Life Sciences, 258, 118136. https://doi.org/10.1016/j.lfs.2020.118136
  • Reich, K., Gordon, K.B., Strober, B., Langley, R.G., Miller, M., Yang, Y.W., Shen, Y.K., You, Y., Zhu, Y., Foley, P., & Blauvelt, A. (2022b). Super-response to guselkumab treatment in patients with moderate-to-severe psoriasis: Age, body weight, baseline psoriasis area and severity index, and baseline investigator’s global assessment scores predict complete skin clearance. Journal of the European Academy of Dermatology and Venereology : JEADV, 36(12), 2393–2400. https://doi.org/10.1111/jdv.18474
  • Reich, K., Iversen, L., Puig, L., Lambert, J., Mrowietz, U., Kaplan Saday, K., & Warren, R.B. (2022a). Long-term efficacy and safety of brodalumab in moderate-to-severe plaque psoriasis: A post hoc pooled analysis of AMAGINE-2 and -3. Journal of the European Academy of Dermatology and Venereology : JEADV, 36(8), 1275–1283. https://doi.org/10.1111/jdv.18068
  • Sahihi, M., & Faraudo, J. (2022). Molecular dynamics simulations of adsorption of SARS-CoV-2 spike protein on polystyrene surface. Journal of Chemical Information and Modeling, 62(16), 3814–3824. https://doi.org/10.1021/acs.jcim.2c00562
  • Sawyer, L.M., Cornic, L., Levin, L.Å., Gibbons, C., Møller, A.H., & Jemec, G.B. (2019). Long-term efficacy of novel therapies in moderate-to-severe plaque psoriasis: A systematic review and network meta-analysis of PASI response. Journal of the European Academy of Dermatology and Venereology : JEADV, 33(2), 355–366. https://doi.org/10.1111/jdv.15277
  • Schneider, C.A., Rasband, W.S., & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Singh, V., Dhankhar, P., Dalal, V., Tomar, S., & Kumar, P. (2022). In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target. Journal of Molecular Graphics & Modelling, 116, 108262. https://doi.org/10.1016/j.jmgm.2022.108262
  • Sk, M.F., Roy, R., Jonniya, N.A., Poddar, S., & Kar, P. (2021). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure & Dynamics, 39(10), 3649–3661. https://doi.org/10.1080/07391102.2020.1768149
  • Skjærven, L., Jariwala, S., Yao, X.Q., & Grant, B.J. (2016). Online interactive analysis of protein structure ensembles with Bio3D-web. Bioinformatics (Oxford, England), 32(22), 3510–3512. https://doi.org/10.1093/bioinformatics/btw482
  • Skjærven, L., Yao, X.Q., Scarabelli, G., & Grant, B.J. (2014). Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics, 15(1), 399. https://doi.org/10.1186/s12859-014-0399-6
  • Srivastava, A.K., Yadav, T.C., Khera, H.K., Mishra, P., Raghuwanshi, N., Pruthi, V., & Prasad, R. (2021). Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. Journal of Autoimmunity, 118, 102614. https://doi.org/10.1016/j.jaut.2021.102614
  • Strober, B., Thaçi, D., Sofen, H., Kircik, L., Gordon, K.B., Foley, P., Rich, P., Paul, C., Bagel, J., Colston, E., Throup, J., Kundu, S., Sekaran, C., Linaberry, M., Banerjee, S., & Papp, K.A. (2023). Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 POETYK PSO-2 trial. Journal of the American Academy of Dermatology, 88(1), 40–51. https://doi.org/10.1016/j.jaad.2022.08.061
  • Tang, L., Li, T., Zhang, B., Zhang, Z., Sun, X., Zhu, Y., Feng, B., Su, Z., Yang, L., Li, H., Liu, H., Chen, Y., Dai, Z., Zheng, X., Li, M., Li, C., Zhao, J., Qiu, X., Ye, S., … Lu, C. (2022). Punicalagin alleviates psoriasis by inhibiting NF-κB-mediated IL-1β transcription and Caspase-1-regulated IL-1β secretion. Frontiers in Pharmacology, 13, 817526. https://doi.org/10.3389/fphar.2022.817526
  • U.S. Food and Drug Administration (U.S. FDA). (2022a). Novel drug approvals for 2022, https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2022.
  • U.S. Food and Drug Administration, Advancing Health through Innovation. (2020). New Drug Approvals 2020, https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2020.
  • U.S. Food and Drug Administration, New Drugs at FDA: CDER’s New Molecular Entities and New Therapeutic Biological Products. (2022b). https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products.
  • Verma, N., Srivastava, S., Malik, R., Yadav, J.K., Goyal, P., & Pandey, J. (2020). Computational investigation for modeling the protein-protein interaction of TasA(28-261)-TapA(33-253): A decisive process in biofilm formation by Bacillus subtilis. Journal of Molecular Modeling, 26(9), 226. https://doi.org/10.1007/s00894-020-04507-0
  • Vertuani, S., Beghelli, E., Scalambra, E., Malisardi, G., Copetti, S., Dal Toso, R., Baldisserotto, A., & Manfredini, S. (2011). Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations. Molecules (Basel, Switzerland), 16(8), 7068–7080. https://doi.org/10.3390/molecules16087068
  • Xiao, Y., Ren, Q., & Wu, L. (2022). The pharmacokinetic property and pharmacological activity of acteoside: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 153, 113296. https://doi.org/10.1016/j.biopha.2022.113296
  • Xiong, H., Xu, Y., Tan, G., Han, Y., Tang, Z., Xu, W., Zeng, F., & Guo, Q. (2015). Glycyrrhizin ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice and inhibits TNF-a-induced ICAM-1 expression via NF-κB/MAPK in HaCaT cells. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 35(4), 1335–1346. https://doi.org/10.1159/000373955
  • Young, C.N., Koepke, J.I., Terlecky, L.J., Borkin, M.S., Boyd, S.L., & Terlecky, S.R. (2008). Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: Implications for psoriasis and inflammatory skin disease. The Journal of Investigative Dermatology, 128(11), 2606–2614. https://doi.org/10.1038/jid.2008.122

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.