341
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Elucidation of bezlotoxumab binding specificity to toxin B in Clostridioides difficile

, , &
Pages 1617-1628 | Received 26 Dec 2022, Accepted 05 Apr 2023, Published online: 26 Apr 2023

References

  • Babcock, G. J., Broering, T. J., Hernandez, H. J., Mandell, R. B., Donahue, K., Boatright, N., Stack, A. M., Lowy, I., Graziano, R., Molrine, D., Ambrosino, D. M., & Thomas, W. D. Jr., (2006). Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infection and Immunity, 74(11), 6339–6347. https://doi.org/10.1128/IAI.00982-06
  • Berendsen, H., Postma, J. P. M., van Gunsteren, W., DiNola, A. D., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhattacharyya, M., Bhat, C. R., & Vishveshwara, S. (2013). An automated approach to network features of protein structure ensembles. Protein Science: A Publication of the Protein Society, 22(10), 1399–1416. https://doi.org/10.1002/pro.2333
  • Brown, D. K., Penkler, D. L., Sheik Amamuddy, O., Ross, C., Atilgan, A. R., Atilgan, C., & Tastan Bishop, Ö. (2017). MD-TASK: A software suite for analyzing molecular dynamics trajectories. Bioinformatics (Oxford, England), 33(17), 2768–2771. https://doi.org/10.1093/bioinformatics/btx349
  • Browne, A. J., Chipeta, M. G., Haines-Woodhouse, G., Kumaran, E. P. A., Hamadani, B. H. K., Zaraa, S., Henry, N. J., Deshpande, A., Reiner, R. C., Jr., Day, N. P. J., Lopez, A. D., Dunachie, S., Moore, C. E., Stergachis, A., Hay, S. I., & Dolecek, C. (2021). Global antibiotic consumption and usage in humans, 2000–18: A spatial modelling study. The Lancet. Planetary Health, 5(12), e893–e904. https://doi.org/10.1016/S2542-5196(21)00280-1
  • Case, D., Betz, R., Cerutti, D. S., Cheatham, T., Darden, T., Duke, R., Giese, T. J., Gohlke, H., Götz, A., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T.-S., LeGrand, S., Li, P., Lin, C., Luchko, T., & Kollman, P. (2016). AMBER 2016, University of California, San Francisco.
  • CDC. (2019). In: C. Centers for Disease, Prevention, Z. National Center for Emerging, C. Infectious Diseases. Division of Healthcare Quality Promotion. Antibiotic Resistance., U. Strategy (Eds.), https://doi.org/10.15620/cdc:82532,
  • Chen, F., Liu, H., Sun, H., Pan, P., Li, Y., Li, D., & Hou, T. (2016). Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Physical Chemistry Chemical Physics: PCCP, 18(32), 22129–22139. https://doi.org/10.1039/c6cp03670h
  • Chen, P., & Jin, R. (2023). Receptor binding mechanisms of Clostridioides difficile toxin B and implications for therapeutics development. The FEBS journal, 290(4), 962–969. https://doi.org/10.1111/febs.16310
  • Chen, P., Zeng, J., Liu, Z., Thaker, H., Wang, S., Tian, S., Zhang, J., Tao, L., Gutierrez, C. B., Xing, L., Gerhard, R., Huang, L., Dong, M., & Jin, R. (2021). Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection. Nature Communications, 12(1), 3748. https://doi.org/10.1038/s41467-021-23878-3
  • Clementel, D., Del Conte, A., Monzon, A. M., Camagni, G. F., Minervini, G., Piovesan, D., & Tosatto, S. C. E. (2022). RING 3.0: Fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Research, 50(W1), W651–W656. https://doi.org/10.1093/nar/gkac365
  • Contreras-Riquelme, S., Garate, J. A., Perez-Acle, T., & Martin, A. J. M. (2018). RIP-MD: A tool to study residue interaction networks in protein molecular dynamics. PeerJ, 6, e5998. https://doi.org/10.7717/peerj.5998
  • Gardiner, D. F., Rosenberg, T., Zaharatos, J., Franco, D., & Ho, D. D. (2009). A DNA vaccine targeting the receptor-binding domain of Clostridium difficile toxin A. Vaccine, 27(27), 3598–3604. https://doi.org/10.1016/j.vaccine.2009.03.058
  • Gustchina, E., Louis, J. M., Frisch, C., Ylera, F., Lechner, A., Bewley, C. A., & Clore, G. M. (2009). Affinity maturation by targeted diversification of the CDR-H2 loop of a monoclonal Fab derived from a synthetic naïve human antibody library and directed against the internal trimeric coiled-coil of gp41 yields a set of Fabs with improved HIV-1 neutralization potency and breadth. Virology, 393(1), 112–119. https://doi.org/10.1016/j.virol.2009.07.019
  • Hernandez, L. D., Racine, F., Xiao, L., DiNunzio, E., Hairston, N., Sheth, P. R., Murgolo, N. J., & Therien, A. G. (2015). Broad coverage of genetically diverse strains of Clostridium difficile by actoxumab and bezlotoxumab predicted by in vitro neutralization and epitope modeling. Antimicrobial Agents and Chemotherapy, 59(2), 1052–1060. https://doi.org/10.1128/AAC.04433-14
  • Hodsdon, M. E., Ponder, J. W., & Cistola, D. P. (1996). The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: Application of a novel distance geometry algorithm. Journal of Molecular Biology, 264(3), 585–602. https://doi.org/10.1006/jmbi.1996.0663
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. Journal of Computational Chemistry, 32(5), 866–877. https://doi.org/10.1002/jcc.21666
  • Isidro, J., Mendes, A., Serrano, M., Henriques, A., & Oleastro, M. (2017) Overview of Clostridium difficile Infection: Life Cycle, Epidemiology, Antimicrobial Resistance and Treatment. Clostridium Difficile - A Comprehensive Overview [Chapter 2] InTech. https://doi.org/10.5772/intechopen.69053.
  • Jin, K., Wang, S., Zhang, C., Xiao, Y., Lu, S., & Huang, Z. (2013). Protective antibody responses against Clostridium difficile elicited by a DNA vaccine expressing the enzymatic domain of toxin B. Human Vaccines & Immunotherapeutics, 9(1), 63–73. https://doi.org/10.4161/hv.22434
  • Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E., Brookes, D. H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D. W., Dolinsky, T., Konecny, R., Koes, D. R., Nielsen, J. E., Head-Gordon, T., Geng, W., … Baker, N. A. (2018). Improvements to the APBS biomolecular solvation software suite. Protein Science: A Publication of the Protein Society, 27(1), 112–128. https://doi.org/10.1002/pro.3280
  • Kammarabutr, J., Mahalapbutr, P., Nutho, B., Kungwan, N., & Rungrotmongkol, T. (2019). Low susceptibility of asunaprevir towards R155K and D168A point mutations in HCV NS3/4A protease: A molecular dynamics simulation. Journal of Molecular Graphics & Modelling, 89, 122–130. https://doi.org/10.1016/j.jmgm.2019.03.006
  • Karnchanapandh, K., Hanpaibool, C., Mahalapbutr, P., & Rungrotmongkol, T. (2021). Source of oseltamivir resistance due to single E276D, R292K, and double E276D/R292K mutations in H10N4 influenza neuraminidase. Journal of Molecular Liquids, 326, 115294. https://doi.org/10.1016/j.molliq.2021.115294
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kordus, S. L., Thomas, A. K., & Lacy, D. B. (2022). Clostridioides difficile toxins: Mechanisms of action and antitoxin therapeutics. Nature Reviews. Microbiology, 20(5), 285–298. https://doi.org/10.1038/s41579-021-00660-2
  • Laskowski, R. A. (2001). PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Research, 29(1), 221–222. https://doi.org/10.1093/nar/29.1.221
  • Laskowski, R. A., Hutchinson, E. G., Michie, A. D., Wallace, A. C., Jones, M. L., & Thornton, J. M. (1997). PDBsum: A Web-based database of summaries and analyses of all PDB structures. Trends in Biochemical Sciences, 22(12), 488–490. https://doi.org/10.1016/s0968-0004(97)01140-7
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Leuzzi, R., Spencer, J., Buckley, A., Brettoni, C., Martinelli, M., Tulli, L., Marchi, S., Luzzi, E., Irvine, J., Candlish, D., Veggi, D., Pansegrau, W., Fiaschi, L., Savino, S., Swennen, E., Cakici, O., Oviedo-Orta, E., Giraldi, M., Baudner, B., … Scarselli, M. (2013). Protective efficacy induced by recombinant Clostridium difficile toxin fragments. Infection and Immunity, 81(8), 2851–2860. https://doi.org/10.1128/IAI.01341-12
  • Madeira, F., Park, Y., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Madura, J. D., Davist, M. E., Gilson, M. K., Wades, R. C., Luty, B. A., & McCammon, J. A. (1994). Biological Applications of Electrostatic Calculations and Brownian Dynamics Simulations. In Reviews in Computational Chemistry (eds K.B. Lipkowitz and D.B. Boyd). https://doi.org/10.1002/9780470125823.ch4
  • Mahalapbutr, P., Darai, N., Panman, W., Opasmahakul, A., Kungwan, N., Hannongbua, S., & Rungrotmongkol, T. (2019). Atomistic mechanisms underlying the activation of the G protein-coupled sweet receptor heterodimer by sugar alcohol recognition. Scientific Reports, 9(1), 10205. https://doi.org/10.1038/s41598-019-46668-w
  • Mahalapbutr, P., Thitinanthavet, K., Kedkham, T., Nguyen, H., Theu, L., Dokmaisrijan, S., Huynh, L., Kungwan, N., & Rungrotmongkol, T. (2019). A theoretical study on the molecular encapsulation of luteolin and pinocembrin with various derivatized beta-cyclodextrins. Journal of Molecular Structure, 1180, 480–490. https://doi.org/10.1016/j.molstruc.2018.12.025
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mansfield, M. J., Tremblay, B. J., Zeng, J., Wei, X., Hodgins, H., Worley, J., Bry, L., Dong, M., & Doxey, A. C. (2020). Phylogenomics of 8,839 clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B. PLoS Pathogens, 16(12), e1009181. https://doi.org/10.1371/journal.ppat.1009181
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Meeprasert, A., Hannongbua, S., & Rungrotmongkol, T. (2014). Key binding and susceptibility of NS3/4A serine protease inhibitors against hepatitis C virus. Journal of Chemical Information and Modeling, 54(4), 1208–1217. https://doi.org/10.1021/ci400605a
  • Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., Drabik, P., Sulea, T., Bayly, C. I., Jakalian, A., & Purisima, E. O. (2007). Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. Journal of Chemical Information and Modeling, 47(1), 122–133. https://doi.org/10.1021/ci600406v
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function and Genetics, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Orth, P., Xiao, L., Hernandez, L. D., Reichert, P., Sheth, P. R., Beaumont, M., Yang, X., Murgolo, N., Ermakov, G., DiNunzio, E., Racine, F., Karczewski, J., Secore, S., Ingram, R. N., Mayhood, T., Strickland, C., & Therien, A. G. (2014). Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. The Journal of Biological Chemistry, 289(26), 18008–18021. https://doi.org/10.1074/jbc.M114.560748
  • Pasi, M., Tiberti, M., Arrigoni, A., & Papaleo, E. (2012). xPyder: A PyMOL plugin to analyze coupled residues and their networks in protein structures. Journal of Chemical Information and Modeling, 52(7), 1865–1874. https://doi.org/10.1021/ci300213c
  • Peng, Z., Simeon, R., Mitchell, S. B., Zhang, J., Feng, H., & Chen, Z. (2019). Designed ankyrin repeat protein (DARPin) neutralizers of TcdB from clostridium difficile ribotype 027. mSphere, 4(5):e00596-19. https://doi.org/10.1128/mSphere.00596-19
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sanachai, K., Mahalapbutr, P., Hengphasatporn, K., Shigeta, Y., Seetaha, S., Tabtimmai, L., Langer, T., Wolschann, P., Kittikool, T., Yotphan, S., Choowongkomon, K., & Rungrotmongkol, T. (2022). Pharmacophore-based virtual screening and experimental validation of pyrazolone-derived inhibitors toward Janus kinases. ACS Omega, 7(37), 33548–33559. https://doi.org/10.1021/acsomega.2c04535
  • Sanachai, K., Mahalapbutr, P., Tabtimmai, L., Seetaha, S., Kittikool, T., Yotphan, S., Choowongkomon, K., & Rungrotmongkol, T. (2022). Discovery of JAK2/3 inhibitors from quinoxalinone-containing compounds. ACS Omega, 7(37), 33587–33598. https://doi.org/10.1021/acsomega.2c04769
  • Sauerborn, M., Leukel, P., & von Eichel-Streiber, C. (1997). The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells and prevents mouse lethality. FEMS Microbiology Letters, 155(1), 45–54. https://doi.org/10.1111/j.1574-6968.1997.tb12684.x
  • Serçinoglu, O., & Ozbek, P. (2018). gRINN: A tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations. Nucleic Acids Research, 46(W1), W554–W562. https://doi.org/10.1093/nar/gky381
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Simeon, R., Jiang, M., Chamoun-Emanuelli, A. M., Yu, H., Zhang, Y., Meng, R., Peng, Z., Jakana, J., Zhang, J., Feng, H., & Chen, Z. (2019). Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B. PLoS Biology, 17(6), e3000311. https://doi.org/10.1371/journal.pbio.3000311
  • Sindhikara, D. J., Yoshida, N., & Hirata, F. (2012). Placevent: An algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase. Journal of Computational Chemistry, 33(18), 1536–1543. https://doi.org/10.1002/jcc.22984
  • Steele, J., Mukherjee, J., Parry, N., & Tzipori, S. (2013). Antibody against TcdB, but not TcdA, prevents development of gastrointestinal and systemic Clostridium difficile disease. The Journal of Infectious Diseases, 207(2), 323–330. https://doi.org/10.1093/infdis/jis669
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics: PCCP, 16(40), 22035–22045. https://doi.org/10.1039/c4cp03179b
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics: PCCP, 16(31), 16719–16729. https://doi.org/10.1039/c4cp01388c
  • Tiberti, M., Invernizzi, G., Lambrughi, M., Inbar, Y., Schreiber, G., & Papaleo, E. (2014). PyInteraph: A framework for the analysis of interaction networks in structural ensembles of proteins. Journal of Chemical Information and Modeling, 54(5), 1537–1551. https://doi.org/10.1021/ci400639r
  • Wang, H., Sun, X., Zhang, Y., Li, S., Chen, K., Shi, L., Nie, W., Kumar, R., Tzipori, S., Wang, J., Savidge, T., & Feng, H. (2012). A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infection and Immunity, 80(8), 2678–2688. https://doi.org/10.1128/IAI.00215-12
  • Wong, W. K., Leem, J., & Deane, C. M. (2019). Comparative Analysis of the CDR Loops of Antigen Receptors. Frontiers in immunology, 10, 2454. https://doi.org/10.3389/fimmu.2019.02454
  • Xu, L., Sun, H., Li, Y., Wang, J., & Hou, T. (2013). Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. The Journal of Physical Chemistry B, 117(28), 8408–8421. https://doi.org/10.1021/jp404160y
  • Yadav, M., Igarashi, M., & Yamamoto, N. (2021). Dynamic residue interaction network analysis of the oseltamivir binding site of N1 neuraminidase and its H274Y mutation site conferring drug resistance in influenza A virus. PeerJ, 9, e11552. https://doi.org/10.7717/peerj.11552
  • York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. The Journal of Chemical Physics, 99(10), 8345–8348. https://doi.org/10.1063/1.465608

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.