206
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Elucidation of conserved multi-epitope vaccine against Leishmania donovani using reverse vaccinology

& ORCID Icon
Pages 1293-1306 | Received 02 Nov 2022, Accepted 29 Mar 2023, Published online: 13 Apr 2023

References

  • Afonso, L. C., Scharton, T. M., Vieira, L. Q., Wysocka, M., Trinchieri, G., & Scott, P. (1994). The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science (New York, N.Y.), 263(5144), 235–237. https://doi.org/10.1126/science.7904381
  • Agallou, M., Athanasiou, E., Koutsoni, O., Dotsika, E., & Karagouni, E. (2014). Experimental validation of multi-epitope peptides including promising MHC class I-and II-restricted epitopes of four known Leishmania infantum proteins. Frontiers in Immunology, 5, 268. https://doi.org/10.3389/fimmu.2014.00268
  • Aseffa, A., Gumy, A., Launois, P., MacDonald, H. R., Louis, J. A., & Tacchini-Cottier, F. (2002). The early IL-4 response to Leishmania major and the resulting Th2 cell maturation steering progressive disease in BALB/c mice are subject to the control of regulatory CD4+ CD25+ T cells. Journal of Immunology (Baltimore, Md. : 1950), 169(6), 3232–3241. https://doi.org/10.4049/jimmunol.169.6.3232
  • Athanasiou, E., Agallou, M., Tastsoglou, S., Kammona, O., Hatzigeorgiou, A., Kiparissides, C., & Karagouni, E. (2017). A poly (lactic-co-glycolic) acid nanovaccine based on chimeric peptides from different Leishmania infantum proteins induces dendritic cells maturation and promotes peptide-specific IFNγ-producing CD8+ T cells essential for the protection against experimental visceral leishmaniasis. Frontiers in Immunology, 8, 684. https://doi.org/10.3389/fimmu.2017.00684
  • Beverley, S. M., & Turco, S. J. (1998). Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends in Microbiology, 6(1), 35–40. https://doi.org/10.1016/S0966-842X(97)01180-3
  • Bhasin, M., Lata, S., & Raghava, G. P. S. (2007). TAPPred prediction of TAP-binding peptides in antigens. Methods Mol Biol., 409, 381-6. https://doi.org/10.1007/978-1-60327-118-9_28
  • Bhowmick, S., Ravindran, R., & Ali, N. (2007). Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine, 25(35), 6544–6556. https://doi.org/10.1016/j.vaccine.2007.05.042
  • Bhowmick, S., Ravindran, R., & Ali, N. (2014). IL-4 contributes to failure, and colludes with IL-10 to exacerbate Leishmania donovani infection following administration of a subcutaneous leishmanial antigen vaccine. BMC Microbiology, 14(1), 1–12. https://doi.org/10.1186/1471-2180-14-8
  • Biswas, B., Laha, B., Chaudhury, A., & Ghosh, M. (2021). Characterization of a novel amastin-like surface protein (ALSP) of Leishmania donovani, a probable lipase. bioRxiv, 2020-07
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 1–5. https://doi.org/10.1186/1471-2105-7-153
  • De Groot, A. S., McMurry, J., Marcon, L., Franco, J., Rivera, D., Kutzler, M., Weiner, D., & Martin, B. (2005). Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine, 23(17–18), 2121–2131. https://doi.org/10.1016/j.vaccine.2005.01.059
  • de Paiva, R. M. C., Grazielle-Silva, V., Cardoso, M. S., Nakagaki, B. N., Mendonça-Neto, R. P., Canavaci, A. M. C., Souza Melo, N., Martinelli, P. M., Fernandes, A. P., daRocha, W. D., & Teixeira, S. M. R. (2015). Amastin knockdown in Leishmania braziliensis affects parasite-macrophage interaction and results in impaired viability of intracellular amastigotes. PLoS Pathogens, 11(12), e1005296. https://doi.org/10.1371/journal.ppat.1005296
  • Debrabant, A., Joshi, M. B., Pimenta, P. F., & Dwyer, D. M. (2004). Generation of Leishmania donovani axenic amastigotes: Their growth and biological characteristics. International Journal for Parasitology, 34(2), 205–217. https://doi.org/10.1016/j.ijpara.2003.10.011
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 1–15. https://doi.org/10.1186/1745-6150-8-30
  • Dikhit, M. R., Amit, A., Singh, A. K., Kumar, A., Mansuri, R., Sinha, S., Topno, R. K., Mishra, R., Das, V. N. R., Pandey, K., Sahoo, G. C., Ali, V., Bimal, S., & Das, P. (2017). Vaccine potential of HLA‐A2 epitopes from Leishmania Cysteine Protease Type III (CPC). Parasite Immunology, 39(9), e12451. https://doi.org/10.1111/pim.12451
  • Dikhit, M. R., Ansari, M. Y., Mansuri, R., Sahoo, B. R., Dehury, B., Amit, A., Topno, R. K., Sahoo, G. C., Ali, V., Bimal, S., Das, P., & Vijaymahantesh, Kalyani. (2016). Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 45, 187–197. https://doi.org/10.1016/j.meegid.2016.08.037
  • Dikhit, M. R., Das, S., Mahantesh, V., Kumar, A., Singh, A. K., Dehury, B., Rout, A. K., Ali, V., Sahoo, G. C., Topno, R. K., Pandey, K., Das, V. N. R., Bimal, S., & Das, P. (2018). The potential HLA Class I-restricted epitopes derived from LeIF and TSA of Leishmania donovani evoke anti-leishmania CD8+ T lymphocyte response. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-32040-x
  • Dikhit, M. R., Kumar, A., Amit, A., Dehury, B., Nathsharma, Y. P., Ansari, M. Y., Ali, V., Topno, R. K., Das, V., Pandey, K., Sahoo, G. C., Bimal, S., & Das, P. (2018). Mining the proteome of Leishmania donovani for the development of novel MHC class I restricted epitope for the control of visceral leishmaniasis. Journal of Cellular Biochemistry, 119(1), 378–391. https://doi.org/10.1002/jcb.26190
  • Dikhit, M. R., Kumar, A., Das, S., Dehury, B., Rout, A. K., Jamal, F., Sahoo, G. C., Topno, R. K., Pandey, K., Das, V. N. R., Bimal, S., & Das, P. (2017). Identification of potential MHC Class-II-restricted epitopes derived from Leishmania donovani antigens by reverse vaccinology and evaluation of their CD4+ T-cell responsiveness against visceral leishmaniasis. Frontiers in Immunology, 8, 1763. https://doi.org/10.3389/fimmu.2017.01763
  • Dikhit, M. R., Kumar, S., Sahoo, B. R., Mansuri, R., Amit, A., Yousuf Ansari, M., Sahoo, G. C., Bimal, S., Das., & P. Vijaymahantesh. (2015). Computational elucidation of potential antigenic CTL epitopes in Ebola virus. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 36, 369–375. https://doi.org/10.1016/j.meegid.2015.10.012
  • Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Frontiers in Immunology, 11, 1784. https://doi.org/10.3389/fimmu.2020.01784
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • El Fakhry, Y., Ouellette, M., & Papadopoulou, B. (2002). A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics, 2(8), 1007–1017. https://doi.org/10.1002/1615-9861(200208)2:8<1007::AID-PROT1007>3.0.CO;2-G
  • Ferris, L. K., Mburu, Y. K., Mathers, A. R., Fluharty, E. R., Larregina, A. T., Ferris, R. L., & Falo, L. D., Jr. (2013). Human beta-defensin 3 induces maturation of human Langerhans cell–like dendritic cells: An antimicrobial peptide that functions as an endogenous adjuvant. The Journal of Investigative Dermatology, 133(2), 460–468. https://doi.org/10.1038/jid.2012.319
  • Frank, S. A. (2020). Immunology and evolution of infectious disease. Princeton University Press.
  • Funderburg, N., Lederman, M. M., Feng, Z., Drage, M. G., Jadlowsky, J., Harding, C. V., Weinberg, A., & Sieg, S. F. (2007). Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18631–18635. https://doi.org/10.1073/pnas.0702130104
  • Goncalves, R., Christensen, S. M., & Mosser, D. M. (2020). Humoral immunity in leishmaniasis–Prevention or promotion of parasite growth? Cytokine: X, 2(4), 100046. https://doi.org/10.1016/j.cytox.2020.100046
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
  • Kaye, P. M., & Aebischer, T. (2011). Visceral leishmaniasis: Immunology and prospects for a vaccine. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 17(10), 1462–1470. https://doi.org/10.1111/j.1469-0691.2011.03610.x
  • Kumar, A., Dikhit, M. R., Amit, A., Zaidi, A., Pandey, R. K., Singh, A. K., Suman, S. S., Ali, V., Das, V. N. R., Pandey, K., Kumar, V., Singh, S. K., Narayan, S., Chourasia, H. K., Das, P., & Bimal, S. (2018). Immunomodulation induced through ornithine decarboxylase DNA immunization in Balb/c mice infected with Leishmania donovani. Molecular Immunology, 97, 33–44. https://doi.org/10.1016/j.molimm.2018.03.004
  • Lathwal, A., Kumar, R., kaur, D., & Raghava, G. P. (2021). In silico model for predicting IL-2 inducing peptides in human. bioRxiv, 2021-06.
  • Lear, S., & Cobb, S. L. (2016). Pep-Calc. com: A set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. Journal of Computer-Aided Molecular Design, 30(3), 271–277. https://doi.org/10.1007/s10822-016-9902-7
  • Maloy, K. J., & Powrie, F. (2001). Regulatory T cells in the control of immune pathology. Nature Immunology, 2(9), 816–822. https://doi.org/10.1038/ni0901-816
  • Mansuri, R., Kumar, A., Rana, S., Panthi, B., Ansari, M. Y., Das, S., Dikhit, M. R., Sahoo, G. C., & Das, P. (2017). In vitro evaluation of antileishmanial activity of computationally screened compounds against ascorbate peroxidase to combat amphotericin B drug resistance. Antimicrobial Agents and Chemotherapy, 61(7), e02429-16. https://doi.org/10.1128/AAC.02429-16
  • Mathur, D., Singh, S., Mehta, A., Agrawal, P., & Raghava, G. P. (2018). In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS One, 13(6), e0196829. https://doi.org/10.1371/journal.pone.0196829
  • Nagpal, G., Usmani, S. S., Dhanda, S. K., Kaur, H., Singh, S., Sharma, M., & Raghava, G. P. (2017). Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/srep42851
  • Nguyen, M. N., Krutz, N. L., Limviphuvadh, V., Lopata, A. L., Gerberick, G. F., & Maurer-Stroh, S. (2022). AllerCatPro 2.0: A web server for predicting protein allergenicity potential. Nucleic Acids Research, 50(W1), W36–W43. https://doi.org/10.1093/nar/gkac446
  • Palm, N. W., & Medzhitov, R. (2009). Pattern recognition receptors and control of adaptive immunity. Immunological Reviews, 227(1), 221–233. https://doi.org/10.1111/j.1600-065X.2008.00731.x
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: Interactive docking prediction of protein‐protein complexes and symmetric multimers. Bioinformatics (Oxford, England), 30(12), 1771–1773. https://doi.org/10.1093/bioinformatics/btu097
  • Piscopo, T. V., & Azzopardi, C. M. (2007). Leishmaniasis. Postgraduate Medical Journal, 83(976), 649–657. https://doi.org/10.1136/pgmj.2006.047340corr1
  • Rafati, S., Hassani, N., Taslimi, Y., Movassagh, H., Rochette, A., & Papadopoulou, B. (2006). Amastin peptide-binding antibodies as biomarkers of active human visceral leishmaniasis. Clinical and Vaccine Immunology : CVI, 13(10), 1104–1110. https://doi.org/10.1128/CVI.00188-06
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Ribeiro, P. A. F., Vale, D. L., Dias, D. S., Lage, D. P., Mendonça, D. V. C., Ramos, F. F., Carvalho, L. M., Carvalho, A. M. R. S., Steiner, B. T., Roque, M. C., Oliveira-da-Silva, J. A., Oliveira, J. S., Tavares, G. S. V., Galvani, N. C., Martins, V. T., Chávez-Fumagalli, M. A., Roatt, B. M., Moreira, R. L. F., Menezes-Souza, D., … Coelho, E. A. F. (2020). Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis. Cytokine, 129, 155031. https://doi.org/10.1016/j.cyto.2020.155031
  • Roberts, M. T. M. (2005). Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. British Medical Bulletin, 75–76(1), 115–130. https://doi.org/10.1093/bmb/ldl003
  • Saha, S., & Raghava, G. P. S. (2004, September). BcePred: Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In International Conference on Artificial Immune Systems (pp. 197–204). Springer.
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Seyed, N., Taheri, T., & Rafati, S. (2016). Post-genomics and vaccine improvement for Leishmania. Frontiers in Microbiology, 7, 467. https://doi.org/10.3389/fmicb.2016.00467
  • Shintouo, C. M., Shey, R. A., Nebangwa, D. N., K. Esoh, K., Nongley, N. F., Nguve, J. E., Giron, P., Mutesa, L., Vanhamme, L., Souopgui, J., Ghogomu, S. M., & Njemini, R. (2020). In silico design and validation of ovmane1, a chimeric antigen for human onchocerciasis diagnosis. Pathogens, 9(6), 495. https://doi.org/10.3390/pathogens9060495
  • Singh, H., & Raghava, G. P. S. (2001). ProPred: Prediction of HLA-DR binding sites. Bioinformatics (Oxford, England), 17(12), 1236–1237. https://doi.org/10.1093/bioinformatics/17.12.1236
  • Singh, H., & Raghava, G. P. S. (2003). ProPred1: Prediction of promiscuous MHC Class-I binding sites. Bioinformatics (Oxford, England), 19(8), 1009–1014. https://doi.org/10.1093/bioinformatics/btg108
  • Solano-Gallego, L., Montserrat-Sangrà, S., Ordeix, L., & Martínez-Orellana, P. (2016). Leishmania infantum-specific production of IFN-γ and IL-10 in stimulated blood from dogs with clinical leishmaniosis. Parasites & Vectors, 9(1), 1–10. https://doi.org/10.1186/s13071-016-1598-y
  • Soto, M., Ramírez, L., Solana, J. C., Cook, E. C., Hernández-García, E., Requena, J. M., & Iborra, S. (2021). Inoculation of the Leishmania infantum HSP70-II null mutant induces long-term protection against L. amazonensis infection in BALB/c mice. Microorganisms, 9(2), 363. https://doi.org/10.3390/microorganisms9020363
  • Steinitz, K. N., van Helden, P. M., Binder, B., Wraith, D. C., Unterthurner, S., Hermann, C., Schuster, M., Ahmad, R. U., Weiller, M., Lubich, C., de la Rosa, M., Schwarz, H. P., & Reipert, B. M. (2012). CD4+ T-cell epitopes associated with antibody responses after intravenously and subcutaneously applied human FVIII in humanized hemophilic E17 HLA-DRB1* 1501 mice. Blood, the Journal of the American Society of Hematology, 119(17), 4073–4082. https://doi.org/10.1182/blood-2011-08-374645
  • Stober, C. B., Lange, U. G., Roberts, M. T., Alcami, A., & Blackwell, J. M. (2005). IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. Journal of Immunology (Baltimore, Md. : 1950), 175(4), 2517–2524. https://doi.org/10.4049/jimmunol.175.4.2517
  • Stober, C. B., Lange, U. G., Roberts, M. T. M., Gilmartin, B., Francis, R., Almeida, R., Peacock, C. S., McCann, S., & Blackwell, J. M. (2006). From genome to vaccines for leishmaniasis: Screening 100 novel vaccine candidates against murine Leishmania major infection. Vaccine, 24(14), 2602–2616. https://doi.org/10.1016/j.vaccine.2005.12.012
  • Suvas, S., Kumaraguru, U., Pack, C. D., Lee, S., & Rouse, B. T. (2003). CD4+ CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. The Journal of Experimental Medicine, 198(6), 889–901. https://doi.org/10.1084/jem.20030171
  • Tarrahimofrad, H., Rahimnahal, S., Zamani, J., Jahangirian, E., & Aminzadeh, S. (2021). Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Scientific Reports, 11(1), 1–22. https://doi.org/10.1038/s41598-021-03932-2
  • Ternette, N., Block, P. D., Sánchez-Bernabéu, Á., Borthwick, N., Pappalardo, E., Abdul-Jawad, S., Ondondo, B., Charles, P. D., Dorrell, L., Kessler, B. M., & Hanke, T. (2015). Early kinetics of the HLA class I-associated peptidome of MVA. HIVconsv-infected cells. Journal of Virology, 89(11), 5760–5771. https://doi.org/10.1128/JVI.03627-14
  • Timmons, P. B., & Hewage, C. M. (2021). APPTEST is a novel protocol for the automatic prediction of peptide tertiary structures. Briefings in Bioinformatics, 22(6), bbab308. https://doi.org/10.1093/bib/bbab308
  • Tolouei, S., Hejazi, S. H., Ghaedi, K., Khamesipour, A., & Hasheminia, S. J. (2013). TLR 2 and TLR 4 in cutaneous Leishmaniasis caused by Leishmania major. Scandinavian Journal of Immunology, 78(5), 478–484. https://doi.org/10.1111/sji.12105
  • Walker, J. M. (Ed.). (2005). The proteomics protocols handbook. Humana press.
  • Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11(1), 3238. https://doi.org/10.1038/s41598-021-81749-9
  • Zheng, W., Zhang, C., Li, Y., Pearce, R., Bell, E. W., & Zhang, Y. (2021). Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1(3), 100014. https://doi.org/10.1016/j.crmeth.2021.100014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.