167
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biophysical and in-silico studies on the structure-function relationship of Brugia malayi protein disulfide isomerase

, , , , , ORCID Icon, , & show all
Pages 1533-1543 | Received 14 Nov 2022, Accepted 03 Apr 2023, Published online: 20 Apr 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ali Khan, H., & Mutus, B. (2014). Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Frontiers in Chemistry, 2, 70. https://doi.org/10.3389/fchem.2014.00070
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Caba, C., Ali Khan, H., Auld, J., Ushioda, R., Araki, K., Nagata, K., & Mutus, B. (2018). Conserved residues Lys57 and Lys401 of protein disulfide isomerase maintain an active site conformation for optimal activity: Implications for post-translational regulation. Frontiers in Molecular Biosciences, 5, 18. https://doi.org/10.3389/fmolb.2018.00018
  • Chambers, J. E., Tavender, T. J., Oka, O. B. V., Warwood, S., Knight, D., & Bulleid, N. J. (2010). The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1α. The Journal of Biological Chemistry, 285(38), 29200–29207. https://doi.org/10.1074/jbc.M110.156596
  • Creighton, T. E., Bagley, C. J., Cooper, L., Darby, N. J., Freedman, R. B., Kemmink, J., & Sheikh, A. (1993). On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI): Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. Journal of Molecular Biology, 232(4), 1176–1196. https://doi.org/10.1006/jmbi.1993.1470
  • Creighton, T. E., Hillson, D. A., & Freedman, R. B. (1980). Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. Journal of Molecular Biology, 142(1), 43–62. https://doi.org/10.1016/0022-2836(80)90205-3
  • Dehdasht-Heidari, N., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Investigation on the interaction behavior between safranal and pepsin by spectral and MD simulation studies. Journal of Molecular Liquids, 344, 117903. https://doi.org/10.1016/j.molliq.2021.117903
  • Dobson, C. M. (1992). Resting places on folding pathways. Current Biology: CB, 2(7), 343–345. https://doi.org/10.1016/0960-9822(92)90047-e
  • Doharey, P. K., Singh, S. K., Verma, P., Verma, A., Rathaur, S., & Saxena, J. K. (2016). Insights into the structure-function relationship of Brugia malayi thymidylate kinase (BmTMK). International Journal of Biological Macromolecules, 88, 565–571. https://doi.org/10.1016/j.ijbiomac.2016.04.004
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Geourjon, C., & Deléage, G. (1994). SOPM: A self-optimized method for protein secondary structure prediction. Protein Engineering, 7(2), 157–164. https://doi.org/10.1093/protein/7.2.157
  • Ghahremanian, S., Rashidi, M. M., Raeisi, K., & Toghraie, D. (2022). Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. Journal of Molecular Liquids, 354, 118901. https://doi.org/10.1016/j.molliq.2022.118901
  • Gopi, P., Gurnani, M., Singh, S., Sharma, P., & Pandya, P. (2022). Structural aspects of SARS-CoV-2 mutations: Implications to plausible infectivity with ACE-2 using computational modeling approach. Journal of Biomolecular Structure and Dynamics, 0(0), 1–16. https://doi.org/10.1080/07391102.2022.2108901
  • Gopi, P., Singh, S., Islam, M. M., Yadav, A., Gupta, N., & Pandya, P. (2022). Thermodynamic and structural profiles of multi-target binding of vinblastine in solution. Journal of Molecular Recognition: JMR, 35(12), e2989. https://doi.org/10.1002/jmr.2989
  • Habibian Dehkordi, S., Farhadian, S., & Ghasemi, M. (2021). The interaction between the azo dye tartrazine and α-Chymotrypsin enzyme: Molecular dynamics simulation and multi-spectroscopic investigations. Journal of Molecular Liquids, 344, 117931. https://doi.org/10.1016/j.molliq.2021.117931
  • Habibian-Dehkordi, S., Farhadian, S., Ghasemi, M., & Evini, M. (2022). Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/Amoxicillin complex in a neutral environment. Food Hydrocolloids. 133, 107830. https://doi.org/10.1016/j.foodhyd.2022.107830
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2020). The interaction of Naphthol Yellow S (NYS) with pepsin: Insights from spectroscopic to molecular dynamics studies. International Journal of Biological Macromolecules, 165, 1842–1851. https://doi.org/10.1016/j.ijbiomac.2020.10.093
  • Hatahet, F., & Ruddock, L. W. (2009). Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation. Antioxidants & Redox Signaling, 11(11), 2807–2850. https://doi.org/10.1089/ars.2009.2466
  • Huang, G. S., & Oas, T. G. (1995). Submillisecond folding of monomeric λ repressor. Proceedings of the National Academy of Sciences of the United States of America, 92(15), 6878–6882. https://doi.org/10.1073/pnas.92.15.6878
  • Hudson, D. A., Gannon, S. A., & Thorpe, C. (2015). Oxidative protein folding: From thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radical Biology & Medicine, 80, 171–182. https://doi.org/10.1016/j.freeradbiomed.2014.07.037
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jackson, S. E., & Fersht, A. R. (1991). Folding of chymotrypsin inhibitor 2. 2. Influence of proline isomerization on the folding kinetics and thermodynamic characterization of the transition state of folding. Biochemistry, 30(43), 10436–10443. https://doi.org/10.1021/bi00107a011
  • Jaenicke, R. (1987). Folding and association of proteins. Progress in Biophysics and Molecular Biology, 49(2-3), 117–237. https://doi.org/10.1016/0079-6107(87)90011-3
  • Karala, A.-R., Lappi, A.-K., & Ruddock, L. W. (2010). Modulation of an active-site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization. Journal of Molecular Biology, 396(4), 883–892. https://doi.org/10.1016/j.jmb.2009.12.014
  • Kemmink, J., Darby, N. J., Dijkstra, K., Nilges, M., & Creighton, T. E. (1997). The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Current Biology: CB, 7(4), 239–245. https://doi.org/10.1016/S0960-9822(06)00119-9
  • Khorasanizadeh, S., Peters, I. D., Butt, T. R., & Roder, H. (1993). Folding and stability of a tryptophan-containing mutant of ubiquitin. Biochemistry, 32(27), 7054–7063. https://doi.org/10.1021/bi00078a034
  • Kim, P. S., & Baldwin, R. L. (1990). Intermediates in the folding reactions of small proteins. Annual Review of Biochemistry, 59(1), 631–660. https://doi.org/10.1146/annurev.bi.59.070190.003215
  • Kragelund, B. B., Robinson, C. V., Knudsen, J., Dobson, C. M., & Poulsen, F. M. (1995). Folding of a four-helix bundle: Studies of acyl-coenzyme A binding protein. Biochemistry, 34(21), 7217–7224. https://doi.org/10.1021/bi00021a037
  • Matthews, B. W. (1993). Structural and genetic analysis of protein stability. Annual Review of Biochemistry, 62, 139–160. https://doi.org/10.1146/annurev.bi.62.070193.001035
  • McClure, W. O., & Edelman, G. M. (1966). Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe. Biochemistry, 5(6), 1908–1919. https://doi.org/10.1021/bi00870a018
  • Momeni, L., Farhadian, S., & Shareghi, B. (2022). Study on the interaction of ethylene glycol with trypsin: Binding ability, activity, and stability. Journal of Molecular Liquids, 350, 118542. https://doi.org/10.1016/j.molliq.2022.118542
  • Pace, C. N. (1986). Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods in Enzymology, 131, 266–280. https://doi.org/10.1016/0076-6879(86)31045-0
  • Rami, B. R., & Udgaonkar, J. B. (2001). pH-jump-induced folding and unfolding studies of barstar: Evidence for multiple folding and unfolding pathways. Biochemistry, 40(50), 15267–15279. https://doi.org/10.1021/bi011701r
  • Rashid, F., Sharma, S., & Bano, B. (2005). Comparison of guanidine hydrochloride (GdnHCl) and urea denaturation on inactivation and unfolding of human placental cystatin (HPC). The Protein Journal, 24(5), 283–292. https://doi.org/10.1007/s10930-005-6749-5
  • Royer, C. A. (2006). Probing protein folding and conformational transitions with fluorescence. Chemical Reviews, 106(5), 1769–1784. https://doi.org/10.1021/cr0404390
  • Schindler, T., Herrler, M., Marahiel, M. A., & Schmid, F. X. (1995). Extremely rapid protein folding in the absence of intermediates. Nature Structural Biology, 2(8), 663–673. https://doi.org/10.1038/nsb0895-663
  • Shin, H.-C., & Scheraga, H. A. (2000). Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase. Journal of Molecular Biology, 300(4), 995–1003. https://doi.org/10.1006/jmbi.2000.3928
  • Shin, H.-C., Song, M.-C., & Scheraga, H. A. (2002). Effect of protein disulfide isomerase on the rate-determining steps of the folding of bovine pancreatic ribonuclease A. FEBS Letters, 521(1–3), 77–80. https://doi.org/10.1016/S0014-5793(02)02825-9
  • Sosnick, T. R., Mayne, L., & Englander, S. W. (1996). Molecular collapse: The rate-limiting step in two-state cytochrome c folding. Proteins: Structure, Function, and Genetics, 24(4), 413–426. https://doi.org/10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F
  • Sosnick, T. R., Mayne, L., Hiller, R., & Englander, S. W. (1994). The barriers in protein folding. Nature Structural Biology, 1(3), 149–156. https://doi.org/10.1038/nsb0394-149
  • Stryer, L. (1965). The interaction of a naphthalene dye with apomyoglobin and apohemoglobin: A fluorescent probe of non-polar binding sites. Journal of Molecular Biology, 13(2), 482–495. https://doi.org/10.1016/S0022-2836(65)80111-5
  • Suthar, M. K., Doharey, P. K., Verma, A., & Saxena, J. K. (2013). Behavior of Plasmodium falciparum purine nucleoside phosphorylase in macromolecular crowded environment. International Journal of Biological Macromolecules, 62, 657–662. https://doi.org/10.1016/j.ijbiomac.2013.09.036
  • Tan, Y.-J., Oliveberg, M., Davis, B., & Fersht, A. R. (1995). Perturbed pKA-values in the denatured states of proteins. Journal of Molecular Biology, 254(5), 980–992. https://doi.org/10.1006/jmbi.1995.0670
  • Tian, G., Kober, F.-X., Lewandrowski, U., Sickmann, A., Lennarz, W. J., & Schindelin, H. (2008). The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. The Journal of Biological Chemistry, 283(48), 33630–33640. https://doi.org/10.1074/jbc.M806026200
  • van den Berg, B., Chung, E. W., Robinson, C. V., Mateo, P. L., & Dobson, C. M. (1999). The oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase. The EMBO Journal, 18(17), 4794–4803. https://doi.org/10.1093/emboj/18.17.4794
  • Verma, P., Doharey, P. K., Yadav, S., Omer, A., Singh, P., & Saxena, J. K. (2017). Molecular cloning and characterization of protein disulfide isomerase of Brugia malayi, a human lymphatic filarial parasite. EXCLI Journal, 16, 824. https://doi.org/10.17179/excli2017-214
  • Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21(12), 1049–1074. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  • Wang, C., Li, W., Ren, J., Fang, J., Ke, H., Gong, W., Feng, W., & Wang, C.-C. (2013). Structural insights into the redox-regulated dynamic conformations of human protein disulfide isomerase. Antioxidants & Redox Signaling, 19(1), 36–45. https://doi.org/10.1089/ars.2012.4630
  • Wang, C., Yu, J., Huo, L., Wang, L., Feng, W., & Wang, C. (2012). Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a′ *. The Journal of Biological Chemistry, 287(2), 1139–1149. https://doi.org/10.1074/jbc.M111.303149
  • Yadollahi, E., Shareghi, B., & Farhadian, S. (2022a). Noncovalent interactions between Quinoline yellow and trypsin: In vitro and in silico methods. Journal of Molecular Liquids, 353, 118826. https://doi.org/10.1016/j.molliq.2022.118826
  • Yadollahi, E., Shareghi, B., & Farhadian, S. (2022b). Binding parameters and molecular dynamics of Trypsin-Acid Yellow 17 complexation as a function of concentration. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 281, 121589. https://doi.org/10.1016/j.saa.2022.121589
  • Yao, M., & Bolen, D. W. (1995). How valid are denaturant-induced unfolding free energy measurements? Level of conformance to common assumptions over an extended range of ribonuclease A stability. Biochemistry, 34(11), 3771–3781. https://doi.org/10.1021/bi00011a035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.