150
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Inhibitory effect of baicalein against glycation in HSA: an in vitro approach

, , , &
Pages 935-947 | Received 25 Jan 2023, Accepted 22 Mar 2023, Published online: 26 Apr 2023

References

  • Abdollahpour, N., Soheili, V., Saberi, M. R., & Chamani, J. (2016). Investigation of the interaction between human serum albumin and two drugs as binary and ternary systems. European Journal of Drug Metabolism and Pharmacokinetics, 41(6), 705–721. https://doi.org/10.1007/s13318-015-0297-y
  • Akhter, F., Salman Khan, M., Shahab, U., Ahmad S., & Moinuddin. (2013). Bio-physical characterization of ribose induced glycation: A mechanistic study on DNA perturbations. International Journal of Biological Macromolecules, 58(2013), 206–210. https://doi.org/10.1016/j.ijbiomac.2013.03.036
  • Ansari, N. A., Moinuddin, Alam, K., &, Ali, A. (2009). Preferential recognition of amadori-rich lysine residues by serum antibodies in diabetes mellitus: Role of protein glycation in the disease process. Human Immunology, 70(6), 417–424. https://doi.org/10.1016/j.humimm.2009.03.015
  • Bolton, W. K., Cattran, D. C., Williams, M. E., Adler, S. G., Appel, G. B., Cartwright, K., Foiles, P. G., Freedman, B. I., Raskin, P., Ratner, R. E., Spinowitz, B. S., Whittier, F. C., & Wuerth, J.-P., for the ACTION I Investigator Group (Appendix). (2004). Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. American Journal of Nephrology, 24(1), 32–40. https://doi.org/10.1159/000075627
  • Bouma, B., Kroon-Batenburg, L. M. J., Wu, Y.-P., Brünjes, B., Posthuma, G., Kranenburg, O., de Groot, P. G., Voest, E. E., & Gebbink, M. (2003). Glycation induces formation of amyloid cross-β structure in albumin. The Journal of Biological Chemistry, 278(43), 41810–41819. https://doi.org/10.1074/jbc.M303925200
  • Bourdon, E., & Blache, D. (2001). The importance of proteins in defense against oxidation. Antioxidants & Redox Signaling, 3(2), 293–311. https://doi.org/10.1089/152308601300185241
  • Da Silva Pinto, M., Kwon, Y.-I., Apostolidis, E., Lajolo, F. M., Genovese, M. I., & Shetty, K. (2009). Potential of Ginkgo biloba L. leaves in the management of hyperglycemia and hypertension using in vitro models. Bioresource Technology, 100(24), 6599–6609. https://doi.org/10.1016/j.biortech.2009.07.021
  • Del Giudice, A., Dicko, C., Galantini, L., & Pavel, N. V. (2016). Structural response of human serum albumin to oxidation: Biological buffer to local formation of hypochlorite. The Journal of Physical Chemistry. B, 120(48), 12261–12271. https://doi.org/10.1021/acs.jpcb.6b08601
  • Ellman, G. L. (1959). Tissue sulfhydryl groups, Arch. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Eskandari, K., & Ghourchian, H. (2012). Structural changes of glucose oxidase upon interaction with gold-coated magnetic nano-particles. International Journal of Biological Macromolecules, 51(5), 998–1002. https://doi.org/10.1016/j.ijbiomac.2012.08.001
  • Fouedjou, R. T., Chtita, S., Bakhouch, M., Belaidi, S., Ouassaf, M., Djoumbissie, L. A., Tapondjou, L. A., & Abul Qais, F. (2022). Cameroonian medicinal plants as potential candidates of SARS-CoV-2 inhibitors. Journal of Biomolecular Structure and Dynamics. 40(19), 8615–8629. https://doi.org/10.1080/07391102.2021.1914170
  • Grzegorczyk-Karolak, I., Wysokińska, H., & Olas, B. (2015). Studies on the antioxidant properties of extracts from the roots and shoots of two Scutellaria species in human blood plasma. Acta Biochimica Polonica, 62(2), 253–258. https://doi.org/10.18388/abp.2014_944
  • Hou, G.-Y., Wang, L., Liu, S., Song, F.-R., & Liu, Z.-Q. (2014). Inhibitory effect of eleven herbal extracts on advanced glycation end-products formation and aldose reductase activity. Chinese Chem. Lett, 25(7), 1039–1043. https://doi.org/10.1016/j.cclet.2014.04.029
  • Ihm, S.-H., Yoo, H. J., Park, S. W., & Ihm, J. (1999). Effect of aminoguanidine on lipid peroxidation in streptozotocin-induced diabetic rats. Metabolism: clinical and Experimental, 48(9), 1141–1145. https://doi.org/10.1016/S0026-0495(99)90128-2
  • Iqbal, S., Alam, M. M., & Naseem, I. (2016). Vitamin D prevents glycation of proteins: An in vitro study. FEBS Letters, 590(16), 2725–2736. https://doi.org/10.1002/1873-3468.12278
  • Kakade, M. L., & Liener, I. E. (1969). Determination of available lysine in proteins. Analytical Biochemistry, 27(2), 273–280. https://doi.org/10.1016/0003-2697(69)90032-3
  • Kousar, S., Sheikh, M., Asghar, M., & Sarwar, M. (2009). Effect of aminoguanidine on advanced glycation end products (ages) using normal and diabetic plasma. Journal of the Chemical Society of Pakistan. 31, 109–114.
  • Lapolla, A., Gerhardinger, C., Baldo, L., Fedele, D., Favretto, D., Seraglia, R., & Traldi, P. (1992). Pyrolysis/gas chromatography/mass spectrometry in the analysis of glycated poly-L-lysine. Organic Mass Spectrometry, 27(3), 183–187. https://doi.org/10.1002/oms.1210270306
  • Levine, R. L., Williams, J. A., Stadtman, E. P., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology. 233, 346–357. https://doi.org/10.1016/S0076-6879(94)33040-9
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. http://www.ncbi.nlm.nih.gov/pubmed/14907713 (accessed September 15, 2017). https://doi.org/10.1016/S0021-9258(19)52451-6
  • Maciążek-Jurczyk, M., Janas, K., Pożycka, J., Szkudlarek, A., Rogóż, W., Owczarzy, A., & Kulig, K. (2020). Human serum albumin aggregation/fibrillation and its abilities to drugs binding. Molecules, 25(3), 618. https://doi.org/10.3390/molecules25030618
  • Mansano, C. F. M., Macente, B. I., Nascimento, T. M. T., Pereira, M. M., da Silva, E. P., & De Stéfani, M. V. (2017). Determination of digestible lysine and estimation of essential amino acid requirements for bullfrogs. Aquaculture, 467, 89–93. https://doi.org/10.1016/j.aquaculture.2016.03.008
  • Margarson, M. P., & Soni, N. (1998). Serum albumin: Touchstone or totem? Anaesthesia, 53(8), 789–803. https://doi.org/10.1046/j.1365-2044.1998.00438.x
  • Monnier, V. M., Sell, D. R., Dai, Z., Nemet, I., Collard, F., & Zhang, J. (2008). The role of the amadori product in the complications of diabetes. Annals of the New York Academy of Sciences, 1126, 81–88. https://doi.org/10.1196/annals.1433.052
  • Neelofar, K., & Ahmad, J. (2015). Amadori albumin in diabetic nephropathy. Indian Journal of Endocrinology and Metabolism, 19(1), 39–46. https://doi.org/10.4103/2230-8210.146863
  • Neelofar, N., Ahmad, J., & Alam, K. (2015). Impact of in vitro non-enzymatic glycation on biophysical and biochemical regimes of human serum albumin: Relevance in diabetes associated complications. RSC Advances, 5(78), 63605–63614. https://doi.org/10.1039/C5RA07232H
  • Nour, H., Abchir, O., Belaidi, S., Qais, F. A., Chtita, S., & Belaaouad, S. (2022). 2D‐QSAR and molecular docking studies of carbamate derivatives to discover novel potent anti‐butyrylcholinesterase agents for Alzheimer’s disease treatment. Bulletin of the Korean Chemical Society, 43(2), 277–292. https://doi.org/10.1002/bkcs.12449
  • Ouassaf, M., Belaidi, S., Chtita, S., Lanez, T., Abul Qais, F., & Md Amiruddin, H. (2022). Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics. 40(21), 11264–11273. https://doi.org/10.1080/07391102.2021.1957712
  • Qais, F. A., & Ahmad, I. (2019). Mechanism of non-enzymatic antiglycation action by coumarin: A biophysical study. New Journal of Chemistry, 43(32), 12823–12835. https://doi.org/10.1039/C9NJ01490J
  • Qais, F. A., Alam, M. M., Naseem, I., & Ahmad, I. (2016). Understanding the mechanism of non-enzymatic glycation inhibition by cinnamic acid: An in vitro interaction and molecular modelling study. RSC Advances, 6(70), 65322–65337. https://doi.org/10.1039/C6RA12321J
  • Qais, F. A., Alomar, S. Y., Imran, M. A., & Hashmi, M. A. (2022). In-silico analysis of phytocompounds of olea europaea as potential anti-cancer agents to target PKM2 protein. Molecules, 27(18), 5793. https://doi.org/10.3390/molecules27185793
  • Qais, F. A., Sarwar, T., Ahmad, I., Khan, R. A., Shahzad, S. A., & Husain, F. M. (2021). Glyburide inhibits non-enzymatic glycation of HSA: An approach for the management of AGEs associated diabetic complications. International Journal of Biological Macromolecules, 169, 143–152. https://doi.org/10.1016/j.ijbiomac.2020.12.096
  • Rabbani, G., & Ahn, S. N. (2019). Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International Journal of Biological Macromolecules, 123, 979–990. https://doi.org/10.1016/j.ijbiomac.2018.11.053
  • Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., & Khan, R. H. (2012). pH-Induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochemistry and Biophysics, 62(3), 487–499. https://doi.org/10.1007/s12013-011-9335-9
  • Reddy, V. P., & Beyaz, A. (2006). Inhibitors of the maillard reaction and AGE breakers as therapeutics for multiple diseases, Drug. Drug Discovery Today. 11(13-14), 646–654. https://doi.org/10.1016/j.drudis.2006.05.016
  • Rondeau, P., Armenta, S., Caillens, H., Chesne, S., & Bourdon, E. (2007). Assessment of temperature effects on β-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: Relations between structural changes and antioxidant properties. Archives of Biochemistry and Biophysics, 460(1), 141–150. https://doi.org/10.1016/j.abb.2007.01.014
  • Sadowska-Bartosz, I., & Bartosz, G. (2015). Prevention of protein glycation by natural compounds. Molecules (Basel, Switzerland), 20(2), 3309–3334. https://doi.org/10.3390/molecules20023309
  • Saeed, A., Ejaz, S. A., Sarfraz, M., Tamam, N., Siddique, F., Riaz, N., Qais, F. A., Chtita, S., & Iqbal, J. (2022). Discovery of phenylcarbamoylazinane-1,2,4-triazole amides derivatives as the potential inhibitors of aldo-keto reductases (AKR1B1 & AKRB10): Potential lead molecules for treatment of colon cancer. Molecules, 27(13), 3981. https://doi.org/10.3390/molecules27133981
  • Sahu, A., Gupta, T., & Sarkar, P. D. (2010). Comparative study of Nitro Blue Tetrazolium (NBT) reduction method for estimation of glycated haemoglobin with glycated HbA1C estimated on DCA2000 + Analyzer (immunoagglutination inhibition. The Journal of the Association of Physicians of India, 58(2010), 20–22.)
  • Schmitt, A., Schmitt, J., Münch, G., & Gasic-Milencovic, J. (2005). Characterization of advanced glycation end products for biochemical studies: Side chain modifications and fluorescence characteristics. Analytical Biochemistry, 338(2), 201–215. https://doi.org/10.1016/j.ab.2004.12.003
  • Selvin, E., Rawlings, A. M., Grams, M., Klein, R., Sharrett, A. R., Steffes, M., & Coresh, J. (2014). Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: A prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. The Lancet. Diabetes & Endocrinology, 2(4), 279–288. https://doi.org/10.1016/S2213-8587(13)70199-2
  • Shang, X., He, X., He, X., Li, M., Zhang, R., Fan, P., Zhang, Q., & Jia, Z. (2010). The genus Scutellaria an ethnopharmacological and phytochemical review. Journal of Ethnopharmacology, 128(2), 279–313. https://doi.org/10.1016/j.jep.2010.01.006
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure and Dynamics. 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Tayyab, S., Khan, N. J., Khan, M. A., & Kumar, Y. (2003). Behavior of various mammalian albumins towards bilirubin binding and photochemical properties of different bilirubin–albumin complexes. International Journal of Biological Macromolecules, 31(4-5), 187–193. https://doi.org/10.1016/S0141-8130(02)00081-8
  • Traverso, N., Menini, S., Cottalasso, D., Odetti, P., Marinari, U. M., & Pronzato, M. A. (1997). Mutual interaction between glycation and oxidation during non-enzymatic protein modification. Biochimica et Biophysica Acta, 1336(3), 409–418. https://doi.org/10.1016/S0304-4165(97)00052-4
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Yasmeen, S., Qais., & F. A., Riyazuddeen. (2017). Unraveling the thermodynamics, binding mechanism and conformational changes of HSA with chromolyn sodium: Multispecroscopy, isothermal titration calorimetry and molecular docking studies. International Journal of Biological Macromolecules, 105(Pt 1), 92–102. https://doi.org/10.1016/j.ijbiomac.2017.06.122
  • Zhang, W., Zhang, Q., Wang, F., Yuan, L., Xu, Z., Jiang, F., & Liu, Y. (2015). Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. Luminescence : The Journal of Biological and Chemical Luminescence, 30(4), 397–404. https://doi.org/10.1002/bio.2748

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.