121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of the binding interaction of salmon sperm DNA with nintedanib, a tyrosine kinase inhibitor using multi-spectroscopic, thermodynamic, and in silico approaches

, , , , , & show all
Pages 1170-1180 | Received 15 Feb 2023, Accepted 28 Mar 2023, Published online: 20 Apr 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230–661230. https://doi.org/10.3389/fchem.2021.661230
  • Bi, S., Yan, L., Wang, Y., Pang, B., & Wang, T. (2012). Spectroscopic study on the interaction of eugenol with salmon sperm DNA in vitro. Journal of Luminescence, 132(9), 2355–2360. https://doi.org/10.1016/j.jlumin.2012.04.029
  • BIOVIA. (2021). Dassault Systèmes, [Discovery Studio client], [21.1.0.20298], San Diego: Dassault Systèmes.
  • Chen, C. B., Chen, J., Wang, J., Zhu, Y. Y., & Shi, J. H. (2015). Combined spectroscopic and molecular docking approach to probing binding interactions between lovastatin and calf thymus DNA. Luminescence: The Journal of Biological and Chemical Luminescence, 30(7), 1004–1010. https://doi.org/10.1002/bio.2851
  • Chen, K. Y., Zhou, K. L., Lou, Y. Y., & Shi, J. H. (2019). Exploring the binding interaction of calf thymus DNA with lapatinib, a tyrosine kinase inhibitor: Multi-spectroscopic techniques combined with molecular docking. Journal of Biomolecular Structure & Dynamics, 37(3), 576–583. https://doi.org/10.1080/07391102.2018.1433067
  • Dogan-Topal, B., Bozal-Palabiyik, B., Ozkan, S. A., & Uslu, B. (2014). Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques. Sensors and Actuators B: Chemical, 194, 185–194. https://doi.org/10.1016/j.snb.2013.12.088
  • Dolatabadi, J., Panahi-Azar, V., Barzegar, A., Jamali, A. A., Kheirdoosh, F., Kashanian, S., & Omidi, Y. (2014). Spectroscopic and molecular modeling studies of human serum albumin interaction with propyl gallate. RSC Adv, 4(110), 64559–64564. https://doi.org/10.1039/C4RA11103F
  • Dong, X.-M., Lou, Y.-Y., Zhou, K.-L., & Shi, J.-H. (2018). Exploration of association of telmisartan with calf thymus DNA using a series of spectroscopic methodologies and theoretical calculation. Journal of Molecular Liquids, 266, 1–9. https://doi.org/10.1016/j.molliq.2018.06.057
  • Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer: Conformation and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 78(4), 2179–2183. https://doi.org/10.1073/pnas.78.4.2179
  • Fathi, F., Mohammadzadeh-Aghdash, H., Sohrabi, Y., Dehghan, P., & Ezzati Nazhad Dolatabadi, J. (2018). Kinetic and thermodynamic studies of bovine serum albumin interaction with ascorbyl palmitate and ascorbyl stearate food additives using surface plasmon resonance. Food Chemistry, 246, 228–232. https://doi.org/10.1016/j.foodchem.2017.11.023
  • FDA. (2014). https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021742s013lbl.pdf.
  • Ganguly, A., Ghosh, S., & Guchhait, N. (2015). Spectroscopic and viscometric elucidation of the interaction between a potential chloride channel blocker and calf-thymus DNA: The effect of medium ionic strength on the binding mode. Physical Chemistry Chemical Physics: PCCP, 17(1), 483–492. https://doi.org/10.1039/C4CP04175E
  • Gao, Q., Williams, L. D., Egli, M., Rabinovich, D., Chen, S. L., Quigley, G. J., & Rich, A. (1991). Drug-induced DNA repair: X-ray structure of a DNA-ditercalinium complex. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2422–2426. https://doi.org/10.1073/pnas.88.6.2422
  • Grueso, E., López-Pérez, G., Castellano, M., & Prado-Gotor, R. (2012). Thermodynamic and structural study of phenanthroline derivative ruthenium complex/DNA interactions: Probing partial intercalation and binding properties. Journal of Inorganic Biochemistry, 106(1), 1–9. https://doi.org/10.1016/j.jinorgbio.2011.09.028
  • Guo, J., Zhong, R., Li, W., Liu, Y., Bai, Z., Yin, J., Liu, J., Gong, P., Zhao, X., & Zhang, F. (2015). Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas. Applied Surface Science, 359, 82–88. https://doi.org/10.1016/j.apsusc.2015.09.247
  • Guo, Y., Yue, Q., & Gao, B. (2011). Molecular docking study investigating the possible mode of binding of C.I. Acid Red 73 with DNA. International Journal of Biological Macromolecules, 49(1), 55–61. https://doi.org/10.1016/j.ijbiomac.2011.03.009
  • Hegde, A. H., Prashanth, S. N., & Seetharamappa, J. (2012). Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. Journal of Pharmaceutical and Biomedical Analysis, 63, 40–46. https://doi.org/10.1016/j.jpba.2012.01.034
  • Hegde, A. H., & Seetharamappa, J. (2014). Fluorescence and circular dichroism studies on binding and conformational aspects of an anti-leukemic drug with DNA. Molecular Biology Reports, 41(1), 67–71. https://doi.org/10.1007/s11033-013-2838-2
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Islam, M. M., Chakraborty, M., Pandya, P., Masum, A., Gupta, N., & Mukhopadhyay, S. (2013). Binding of DNA with rhodamine B: Spectroscopic and molecular modeling studies. Dyes and Pigments, 99(2), 412–422. https://doi.org/10.1016/j.dyepig.2013.05.028
  • Kashanian, S., Javanmardi, S., Chitsazan, A., Omidfar, K., & Paknejad, M. (2012). DNA-binding studies of fluoxetine antidepressant. DNA and Cell Biology, 31(7), 1349–1355. https://doi.org/10.1089/dna.2012.1657
  • Klotz, I. M. (1973). Physiochemical aspects of drug-protein interactions: A general perspective. Annals of the New York Academy of Sciences, 226, 18–35. https://doi.org/10.1111/j.1749-6632.1973.tb20465.x
  • Kumar, C., & Asuncion, E. H. (1993). DNA binding studies and site selective fluorescence sensitization of an anthryl probe. Journal of the American Chemical Society, 115(19), 8547–8553. https://doi.org/10.1021/ja00072a004
  • Li, J. F., & Dong, C. (2009). Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 71(5), 1938–1943. https://doi.org/10.1016/j.saa.2008.07.033
  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425–434. https://doi.org/10.1016/j.molliq.2018.10.048
  • Magdy, G., Belal, F., Hakiem, A. F. A., & Abdel-Megied, A. M. (2021). Salmon sperm DNA binding study to cabozantinib, a tyrosine kinase inhibitor: Multi-spectroscopic and molecular docking approaches. International Journal of Biological Macromolecules, 182, 1852–1862. https://doi.org/10.1016/j.ijbiomac.2021.05.164
  • Magdy, G., Shaldam, M. A., Belal, F., & Elmansi, H. (2022). Multi-spectroscopic, thermodynamic, and molecular docking/dynamic approaches for characterization of the binding interaction between calf thymus DNA and palbociclib. Scientific Reports, 12(1), 14723. https://doi.org/10.1038/s41598-022-19015-9
  • Mahadevan, S., & Palaniandavar, M. (1998). Spectroscopic and voltammetric studies on copper complexes of 2,9-dimethyl-1,10-phenanthrolines bound to calf thymus DNA. Inorganic Chemistry, 37(4), 693–700. https://doi.org/10.1021/ic961066r
  • Marvinsketch, Marvin version 22.2.0, ChemAxon (https://www.chemaxon.com).
  • Mohammadzadeh-Aghdash, H., Ezzati Nazhad Dolatabadi, J., Dehghan, P., Panahi-Azar, V., & Barzegar, A. (2017). Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive. Food Chemistry, 228, 265–269. https://doi.org/10.1016/j.foodchem.2017.01.149
  • Moreno, T., Pous, J., Subirana, J. A., & Campos, J. L. (2010). Coiled-coil conformation of a pentamidine-DNA complex. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 3), 251–257. https://doi.org/10.1107/S0907444909055693
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • National Center for Biotechnology Information. (2022). PubChem compound summary for CID 135476717, Nintedanib esylate. August 7, 2022 https://pubchem.ncbi.nlm.nih.gov/compound/Nintedanib-esylate.
  • Nori, A., & Kopecek, J. (2005). Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Advanced Drug Delivery Reviews, 57(4), 609–636. https://doi.org/10.1016/j.addr.2004.10.006
  • Olmsted, J., III., & Kearns, D. R. (1977). Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry, 16(16), 3647–3654. https://doi.org/10.1021/bi00635a022
  • Rahman, Y., Afrin, S., Husain, M. A., Sarwar, T., Ali, A., Tabish., & M., Shamsuzzaman. (2017). Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study. Archives of Biochemistry and Biophysics, 625–626, 1–12. https://doi.org/10.1016/j.abb.2017.05.014
  • Rauf, S., Gooding, J. J., Akhtar, K., Ghauri, M., A., Rahman, M., Anwar, M., A., & Khalid, A. M. (2005). Electrochemical approach of anticancer drugs–DNA interaction. Journal of Pharmaceutical and Biomedical Analysis, 37(2), 205–217. https://doi.org/10.1016/j.jpba.2004.10.037
  • Rehman, S. U., Sarwar, T., Ishqi, H. M., Husain, M. A., Hasan, Z., & Tabish, M. (2015). Deciphering the interactions between chlorambucil and calf thymus DNA: A multi-spectroscopic and molecular docking study. Archives of Biochemistry and Biophysics, 566, 7–14. https://doi.org/10.1016/j.abb.2014.12.013
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Saha, I., & Kumar, G. S. (2011). Spectroscopic characterization of the interaction of phenosafranin and safranin O with double stranded, heat denatured and single stranded calf thymus DNA. Journal of Fluorescence, 21(1), 247–255. https://doi.org/10.1007/s10895-010-0712-3
  • Sahoo, D., Bhattacharya, P., & Chakravorti, S. (2010). Quest for mode of binding of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide with calf thymus DNA. The Journal of Physical Chemistry. B, 114(5), 2044–2050. https://doi.org/10.1021/jp910766q
  • Sarkar, D., Das, P., Basak, S., & Chattopadhyay, N. (2008). Binding interaction of cationic phenazinium dyes with calf thymus DNA: A comparative study. The Journal of Physical Chemistry. B, 112(30), 9243–9249. https://doi.org/10.1021/jp801659d
  • Shahabadi, N., Mahdavi, M., & Zendehcheshm, S. (2022). Can polyoxometalates (POMs) prevent of coronavirus 2019-nCoV cell entry? Interaction of POMs with TMPRSS2 and spike receptor domain complexed with ACE2 (ACE2-RBD): Virtual screening approaches. Informatics in Medicine Unlocked, 29, 100902. https://doi.org/10.1016/j.imu.2022.100902
  • Shahabadi, N., & Moghadam, N. H. (2012). Determining the mode of interaction of calf thymus DNA with the drug sumatriptan using voltammetric and spectroscopic techniques. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 99, 18–22. https://doi.org/10.1016/j.saa.2012.09.022
  • Shahabadi, N., Zendehcheshm, S., Mahdavi, M., & Khademi, F. (2021). Inhibitory activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine on COVID-19 main protease and human ACE2 receptor: A comparative in silico approach. Informatics in Medicine Unlocked, 26, 100745. https://doi.org/10.1016/j.imu.2021.100745
  • Shahabadi, N., Zendehcheshm, S., Mahdavi, M., & Khademi, F. (2023). Repurposing FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, and remdesivir as potential inhibitors against RNA dependent RNA polymerase of SARS-CoV-2: A comparative in silico perspective. Informatics in Medicine Unlocked, 36, 101147. https://doi.org/10.1016/j.imu.2022.101147
  • Shakibapour, N., Dehghani Sani, F., Beigoli, S., Sadeghian, H., & Chamani, J. (2019). Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: Binary and ternary approaches. Journal of Biomolecular Structure & Dynamics, 37(2), 359–371. https://doi.org/10.1080/07391102.2018.1427629
  • Shaldam, M., Tawfik, H., Elmansi, H., Belal, F., Yamaguchi, K., Sugiura, M., & Magdy, G. (2022). Synthesis, crystallographic, DNA binding, and molecular docking/dynamic studies of a privileged chalcone-sulfonamide hybrid scaffold as a promising anticancer agent. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2022.2138551
  • Shi, J.-H., Chen, J., Wang, J., & Zhu, Y.-Y. (2015). Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 443–450. https://doi.org/10.1016/j.saa.2014.09.056
  • Shi, J.-H., Liu, T.-T., Jiang, M., Chen, J., & Wang, Q. (2015). Characterization of interaction of calf thymus DNA with gefitinib: Spectroscopic methods and molecular docking. Journal of Photochemistry and Photobiology. B, Biology, 147, 47–55. https://doi.org/10.1016/j.jphotobiol.2015.03.005
  • Shi, J.-H., Pan, D.-Q., Zhou, K.-L., & Lou, Y.-Y. (2019). Exploring the binding interaction between herring sperm DNA and sunitinib: Insights from spectroscopic and molecular docking approaches. Journal of Biomolecular Structure & Dynamics, 37(4), 837–845. https://doi.org/10.1080/07391102.2018.1445033
  • Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry, 5(2), 129–145. https://doi.org/10.1002/jcc.540050204
  • Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug-DNA interactions and their study by UV-visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology. B, Biology, 124, 1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013
  • Sirajuddin, M., Ali, S., McKee, V., & Ullah, H. (2015). Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 138, 569–578. https://doi.org/10.1016/j.saa.2014.11.061
  • Strekowski, L., & Wilson, B. (2007). Noncovalent interactions with DNA: An overview. Mutation Research, 623(1–2), 3–13. https://doi.org/10.1016/j.mrfmmm.2007.03.008
  • Waring, M. J. (1965). Complex formation between ethidium bromide and nucleic acids. Journal of Molecular Biology, 13(1), 269–282. https://doi.org/10.1016/S0022-2836(65)80096-1
  • Wind, S., Schmid, U., Freiwald, M., Marzin, K., Lotz, R., Ebner, T., Stopfer, P., & Dallinger, C. (2019). Clinical pharmacokinetics and pharmacodynamics of nintedanib. Clinical Pharmacokinetics, 58(9), 1131–1147. https://doi.org/10.1007/s40262-019-00766-0
  • Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1980). Crystal structure analysis of a complete turn of B-DNA. Nature, 287(5784), 755–758. https://doi.org/10.1038/287755a0
  • Wollin, L., Distler, J. H., Denton, C. P., & Gahlemann, M. (2019). Rationale for the evaluation of nintedanib as a treatment for systemic sclerosis-associated interstitial lung disease. Journal of Scleroderma and Related Disorders, 4(3), 212–218. https://doi.org/10.1177/2397198319841842
  • Wollin, L., Wex, E., Pautsch, A., Schnapp, G., Hostettler, K. E., Stowasser, S., & Kolb, M. (2015). Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. The European Respiratory Journal, 45(5), 1434–1445. https://doi.org/10.1183/09031936.00174914
  • Zhou, H., Bi, S., Wang, Y., & Wu, J. (2017). Characterization of the binding of neomycin/paromomycin sulfate with DNA using acridine orange as fluorescence probe and molecular docking technique. Journal of Biomolecular Structure & Dynamics, 35(10), 2077–2089. https://doi.org/10.1080/07391102.2016.1207564

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.