147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico mutation of aromatic with aliphatic amino acid residues in Clostridium perfringens epsilon toxin (ETX) reduces its binding efficiency to Caprine Myelin and lymphocyte (MAL) protein receptors

, , , , , , , & show all
Pages 2257-2269 | Received 19 Dec 2022, Accepted 11 Apr 2023, Published online: 02 May 2023

References

  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 34984. https://doi.org/10.1038/srep34984
  • Blanch, M., Dorca-Arévalo, J., Not, A., Cases, M., Gomez de Aranda, I., Martínez-Yélamos, A., Martínez-Yélamos, S., Solsona, C., & Blasi, J. (2018). The cytotoxicity of epsilon toxin from Clostridium perfringens on lymphocytes is mediated by MAL protein expression. Molecular and Cellular Biology, 38(19), e00086-18. https://doi.org/10.1128/MCB.00086-18
  • Bokori‐Brown, M., Kokkinidou, M. C., Savva, C. G., Fernandes da Costa, S., Naylor, C. E., Cole, A. R., Moss, D. S., Basak, A. K., & Titball, R. W. (2013). Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies. Protein Science, 22(5), 650–659. https://doi.org/10.1002/pro.2250
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dorca-Arévalo, J., Gómez de Aranda, I., & Blasi, J. (2022). New mutants of epsilon toxin from Clostridium perfringens with an altered receptor-binding site and cell-type specificity. Toxins, 14(4), 288. https://doi.org/10.3390/toxins14040288
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 1–9. https://doi.org/10.1186/1741-7007-9-71
  • Fennessey, C. M., Sheng, J., Rubin, D. H., & McClain, M. S. (2012). Oligomerization of Clostridium perfringens epsilon toxin is dependent upon caveolins 1 and 2. PLoS One, 7(10), e46866. https://doi.org/10.1371/journal.pone.0046866
  • Finnie, J. W., & Uzal, F. A. (2022). Pathology and pathogenesis of brain lesions produced by clostridium perfringens type D epsilon toxin. International Journal of Molecular Sciences, 23(16), 9050. https://doi.org/10.3390/ijms23169050
  • Gangwar, N. K., Pawaiya, R. V. S., Gururaj, K., Andani, D., Kumar, A., Singh, R., & Singh, A. P. (2022). Enterocolitis in goats associated with enterotoxaemia in the perspective of two toxins: Epsilon toxin and beta-2 toxin – An immunohistochemical and molecular study. Comparative Immunology, Microbiology and Infectious Diseases, 87, 101837. https://doi.org/10.1016/j.cimid.2022.101837
  • Hooft, R. W. W., Vriend, G., Sander, C., & Abola, E. E. (1996). Errors in protein structures. Nature, 381(6580), 272–272. https://doi.org/10.1038/381272a0
  • Khalili, S., Jahangiri, A., Hashemi, Z. S., Khalesi, B., Mard-Soltani, M., & Amani, J. (2017). Structural pierce into molecular mechanism underlying Clostridium perfringens Epsilon toxin function. Toxicon, 127, 90–99. https://doi.org/10.1016/j.toxicon.2017.01.010
  • Kumar, R., Gururaj, K., Pawaiya, R. V. S., Mishra, A. K., Chaturvedi, V., Varshney, M., Andani, D., Jena, D., Sharma, A., Gangwar, N. K., & Singh, R. (2019). Pathology of experimental Clostridium perfringens type D entero-toxaemia in goats.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Manni, M. M., Sot, J., & Goñi, F. M. (2015). Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells. Biochimica et Biophysica Acta, 1848(3), 797–804. https://doi.org/10.1016/j.bbamem.2014.11.028
  • Mathur, D. D., Deshmukh, S., Kaushik, H., & Garg, L. C. (2010). Functional and structural characterization of soluble recombinant epsilon toxin of Clostridium perfringens D, causative agent of enterotoxaemia. Applied Microbiology and Biotechnology, 88(4), 877–884. https://doi.org/10.1007/s00253-010-2785-y
  • Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., Sangrador-Vegas, A., Scheremetjew, M., Rato, C., Yong, S.-Y., Bateman, A., Punta, M., Attwood, T. K., Sigrist, C. J. A., Redaschi, N., … Finn, R. D. (2015). The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Research, 43(Database issue), D213–21. https://doi.org/10.1093/nar/gku1243
  • Nagahama, M., Seike, S., Ochi, S., Kobayashi, K., & Takehara, M. (2020). Clostridium perfringens epsilon-toxin impairs the barrier function in MDCK cell monolayers in a Ca2+-dependent manner. Toxins, 12(5), 286. https://doi.org/10.3390/toxins12050286
  • Pawaiya, R. S., Gururaj, K., Gangwar, N. K., Singh, D. D., Kumar, R., & Kumar, A. (2020). The challenges of diagnosis and control of enterotoxaemia caused by Clostridium perfringens in small ruminants. Advances in Microbiology, 10(05), 238–273. https://doi.org/10.4236/aim.2020.105019
  • Pontius, J., Richelle, J., & Wodak, S. J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology, 264(1), 121–136. https://doi.org/10.1006/jmbi.1996.0628
  • Singh, D. D., Pawaiya, R. V. S., Gururaj, K., Gangwar, N. K., Mishra, A. K., Singh, R., Andani, D., & Kumar, A. (2018). Detection of Clostridium perfringens toxinotypes, enteropathogenic E. coli, Rota and corona viruses in the intestine of neonatal goat kids by molecular techniques. The Indian Journal of Animal Sciences, 88(6), 655–661. https://doi.org/10.56093/ijans.v88i6.80863
  • Uzal, F. A., & Kelly, W. R. (1998). Experimental Clostridium perfringens type D enterotoxemia in goats. Veterinary Pathology, 35(2), 132–140. https://doi.org/10.1177/030098589803500207
  • Vaguine, A. A., Richelle, J., & Wodak, S. J. (1999). SFCHECK: A unified set of procedure for evaluating the quality of macromolecular structure-factor data and their agreement with atomic model. Acta Crystallographica, Section D, Biological Crystallography, 55(Pt 1), 191–205. https://doi.org/10.1107/S0907444998006684
  • Weng, X., Hamel, L., Martin, L. M., & Peckham, J. (2005). A genetic algorithm for energy minimization in bio-molecular systems. Evolutionary Computation, The 2005 IEEE Congress (Vol. 1, pp. 49–56).
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. https://doi.org/10.1186/1471-2105-9-40
  • Zhang, J., Liang, Y., & Zhang, Y. (2011). Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure (London, England: 1993), 19(12), 1784–1795. https://doi.org/10.1016/j.str.2011.09.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.