706
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In-silico identification of novel DDI2 inhibitor in glioblastoma via repurposing FDA approved drugs using molecular docking and MD simulation study

, ORCID Icon &
Pages 2270-2281 | Received 27 Jan 2023, Accepted 11 Apr 2023, Published online: 03 May 2023

References

  • Chen, T., Ho, M., Briere, J., Moscvin, M., Czarnecki, P. G., Anderson, K. C., Blackwell, T. K., & Bianchi, G. (2022). Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival. Blood Advances, 6(2), 429–440. https://doi.org/10.1182/bloodadvances.2020003820
  • Coates, L., Tuan, H.-F., Tomanicek, S., Kovalevsky, A., Mustyakimov, M., Erskine, P., & Cooper, J. (2008). The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction. Journal of the American Chemical Society, 130(23), 7235–7237. https://doi.org/10.1021/ja801269x
  • Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2021). Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (Mpro) from flavonoid based phytochemical constituents of Calendula officinalis. Journal of Biomolecular Structure and Dynamics, 39(16):1–11. https://doi.org/10.1080/07391102.2020.1796799
  • Davies, A. M., Chansky, K., Lara, P. N., Gumerlock, P. H., Crowley, J., Albain, K. S., Vogel, S. J., & Gandara, D. R. (2009). Bortezomib plus gemcitabine/carboplatin as first-line treatment of advanced non-small cell lung cancer: A phase II Southwest Oncology Group Study (S0339). Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 4(1), 87–92. https://doi.org/10.1097/JTO.0b013e3181915052
  • Dirac-Svejstrup, A. B., Walker, J., Faull, P., Encheva, V., Akimov, V., Puglia, M., Perkins, D., Kümper, S., Hunjan, S. S., Blagoev, B., Snijders, A. P., Powell, D. J., & Svejstrup, J. Q. (2020). DDI2 is a ubiquitin-directed endoprotease responsible for cleavage of transcription factor NRF1. Molecular Cell, 79(2), 332–341.e7. https://doi.org/10.1016/j.molcel.2020.05.035
  • Dou, Q. P., & Zonder, J. A. (2014). Overview of proteasome inhibitor-based anti-cancer therapies: Perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Current Cancer Drug Targets, 14(6), 517–536. https://doi.org/10.2174/1568009614666140804154511
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Gutierrez, T., & Simmen, T. (2014). Endoplasmic reticulum (ER) chaperones and oxidoreductases: Critical regulators of tumor cell survival and immunorecognition. Frontiers in Oncology, 4(OCT), 291. https://doi.org/10.3389/fonc.2014.00291
  • Koizumi, S., Hamazaki, J., & Murata, S. (2018). A homeostatic shift facilitates endoplasmic reticulum proteostasis through transcriptional integration of proteasome by Nrf1. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 94(8), 325–336. https://doi.org/10.2183/pjab.94.021
  • Majumder, R., & Mandal, M. (2022). Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: An in silico docking and molecular dynamics simulation approach. Journal of Biomolecular Structure & Dynamics, 40(2), 696–711. https://pubmed.ncbi.nlm.nih.gov/32897138/ https://doi.org/10.1080/07391102.2020.1817787
  • Majumder, R., Das, C. K., Banerjee, I., Chandra Jena, B., Mandal, A., Das, P., Pradhan, A. K., Das, S., Basak, P., Das, S. K., Emdad, L., Fisher, P. B., & Mandal, M. (2022). Screening of the Prime bioactive compounds from Aloe vera as potential anti-proliferative agents targeting DNA. Computers in Biology and Medicine, 105052. https://doi.org/10.1016/j.compbiomed.2021.105052. https://pubmed.ncbi.nlm.nih.gov/34836625/
  • Marina, D., Arnaud, L., Noel, L. P., Félix, S., Bernard, R., & Natacha, C. (2019). Relevance of translation initiation in diffuse glioma biology and its therapeutic potential. Cells, 8(12), 1542. https://doi.org/10.3390/cells8121542
  • Miller I, B. R., Dwight McGee J, T., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Northrop, A., Vangala, J. R., Feygin, A., & Radhakrishnan, S. K. (2020). Disabling the protease DDI2 attenuates the transcriptional activity of NRF1 and potentiates proteasome inhibitor cytotoxicity. International Journal of Molecular Sciences, 21(1), 327. https://doi.org/10.3390/ijms21010327
  • Op, M., Ribeiro, S. T., Chavarria, C., De Gassart, A., Zaffalon, L., & Martinon, F. (2022). The aspartyl protease DDI2 drives adaptation to proteasome inhibition in multiple myeloma. Cell Death & Disease, 13(5), 1–9. https://doi.org/10.1038/s41419-022-04925-3
  • Peñaranda Fajardo, N. M., Meijer, C., & Kruyt, F. A. E. (2016). The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Biochemical Pharmacology, 118, 1–8. https://doi.org/10.1016/j.bcp.2016.04.008
  • Pyrko, P., Kardosh, A., Wang, W., Xiong, W., Schönthal, A. H., & Chen, T. C. (2007). HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Research, 67(22), 10920–10928. https://doi.org/10.1158/0008-5472.CAN-07-0796
  • Radhakrishnan, S. K., Lee, C. S., Young, P., Beskow, A., Chan, J. Y., & Deshaies, R. J. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Molecular Cell, 38(1), 17–28. https://doi.org/10.1016/j.molcel.2010.02.029
  • Roy, P. K., Biswas, A., Deepak, K., & Mandal, M. (2022). An insight into the ubiquitin-proteasomal axis and related therapeutic approaches towards central nervous system malignancies. Biochimica et Biophysica Acta. Reviews on Cancer, 1877(3), 188734. https://doi.org/10.1016/j.bbcan.2022.188734
  • Roy, P. K., Rajesh, Y., & Mandal, M. (2021). Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Experimental Cell Research. 406(2), 112760. https://doi.org/10.1016/j.yexcr.2021.112760
  • Serbyn, N., Noireterre, A., Bagdiul, I., Plank, M., Michel, A. H., Loewith, R., Kornmann, B., & Stutz, F. (2020). The aspartic protease Ddi1 contributes to DNA-protein crosslink repair in yeast. Molecular Cell, 77(5), 1066–1079.e9. https://doi.org/10.1016/j.molcel.2019.12.007
  • Siva, M., Svoboda, M., Veverka, V., Brynda, J., Trempe, J.-F., Kozisek, M., Fleisigova, I., Belza, J., Konvalinka, J., Grantz & Saskova, K. Human DNA damage-inducible protein: from protein chemistry and 3d structure to deciphering its cellular role. TO BE Publ.
  • Sivá, M., Svoboda, M., Veverka, V., Trempe, J.-F., Hofmann, K., Kožíšek, M., Hexnerová, R., Sedlák, F., Belza, J., Brynda, J., Šácha, P., Hubálek, M., Starková, J., Flaisigová, I., Konvalinka, J., & Šašková, K. G. (2016). Human DNA-damage-inducible 2 protein is structurally and functionally distinct from its yeast ortholog. Scientific Reports, 6(1), 1–15. https://doi.org/10.1038/srep30443
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012, Jul 23) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. http://bmcresnotes.biomedcentral.com/articles/10 .1186/1756-0500-5-367
  • Trempe, J.-F., Grantz Šašková, K., Sivá, M., Ratcliffe, C. D. H., Veverka, V., Hoegl, A., Ménade, M., Feng, X., Shenker, S., Svoboda, M., Kožíšek, M., Konvalinka, J., & Gehring, K. (2016). Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family OPEN.
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA–NA. /pmc/articles/PMC3041641/?report = abstract https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening., J. Chem. Inf. Model., 2016, 56(8), 1399.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.