256
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Targeting neuroblastoma by small-molecule inhibitors of human ALYREF protein: mechanistic insights using molecular dynamics simulations

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1352-1367 | Received 16 Nov 2022, Accepted 30 Mar 2023, Published online: 09 May 2023

References

  • Abidi, S. H., Almansour, N. M., Amerzhanov, D., Allemailem, K. S., Rafaqat, W., Ibrahim, M. A. A., la Fleur, P., Lukac, M., & Ali, S. (2021). Repurposing potential of posaconazole and grazoprevir as inhibitors of SARS-CoV-2 helicase. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-89724-0
  • Ainsley, J., Chaturvedi, S. S., Karabencheva-Christova, T. G., Tanasova, M., & Christov, C. Z. (2018). Integrating molecular probes and molecular dynamics to reveal binding modes of GLUT5 activatory and inhibitory ligands. Chemical Communications (Cambridge, England), 54(71), 9917–9920. https://doi.org/10.1039/c8cc04843f
  • Arifian, H., Maharani, R., Megantara, S., Gazzali, A. M., & Muchtaridi, M. (2022). Amino-acid-conjugated natural compounds: Aims, designs and results. Molecules, 27(21), 7631. https://doi.org/10.3390/molecules27217631
  • Baldini, F., Calderoni, M., Vergani, L., Modesto, P., Florio, T., & Pagano, A. (2021). An overview of long non‐coding (Lnc)rnas in neuroblastoma. International Journal of Molecular Sciences, 22(8), 4234. https://doi.org/10.3390/ijms22084234
  • Bharadwaj, S., Dubey, A., Kamboj, N. K., Sahoo, A. K., Kang, S. G., & Yadava, U. (2021). Drug repurposing for ligand-induced rearrangement of Sirt2 active site-based inhibitors via molecular modeling and quantum mechanics calculations. Scientific Reports, 11(1), 1–25. https://doi.org/10.1038/s41598-021-89627-0
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 84-es. https://doi.org/10.1109/SC.2006.54
  • Braun, I. C., Herold, A., Rode, M., Conti, E., & Izaurralde, E. (2001). Overexpression of TAP/p15 heterodimers bypasses nuclear retention and stimulates nuclear mRNA export. The Journal of Biological Chemistry, 276(23), 20536–20543. https://doi.org/10.1074/jbc.M100400200
  • Bruhn, L., Munnerlyn, A., & Grosschedl, R. (1997). ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRα enhancer function. Genes & Development, 11(5), 640–653. https://doi.org/10.1101/gad.11.5.640
  • Chen, I.-H B., Sciabica, K. S., & Sandri-Goldin, R. M. (2002). ICP27 interacts with the RNA export factor Aly/REF to direct herpes simplex virus type 1 intronless mRNAs to the TAP export pathway. Journal of Virology, 76(24), 12877–12889. https://doi.org/10.1128/JVI.76.24.12877-12889.2002
  • Cui, W., Aouidate, A., Wang, S., Yu, Q., Li, Y., & Yuan, S. (2020). Discovering anti-cancer drugs via computational methods. Frontiers in Pharmacology, 11, 733. https://doi.org/10.3389/fphar.2020.00733
  • De Vita, S., Chini, M. G., Bifulco, G., & Lauro, G. (2021). Insights into the ligand binding to bromodomain‐containing protein 9 (BRD9): A guide to the selection of potential binders by computational methods. Molecules, 26(23), 7192. https://doi.org/10.3390/molecules26237192
  • Du, E., Li, J., Sheng, F., Li, S., Zhu, J., Xu, Y., & Zhang, Z. (2020). A pan‐cancer analysis reveals genetic alterations, molecular mechanisms, and clinical relevance of m 5 C regulators. Clinical and Translational Medicine, 10(5):e180. https://doi.org/10.1002/ctm2.180
  • Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., & Liu, S.-Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
  • Dwivedi, V. D., Singh, A., El-Kafraway, S. A., Alandijany, T. A., Faizo, A. A., Bajrai, L. H., Kamal, M. A., & Azhar, E. I. (2021). Mechanistic insights into the Japanese encephalitis virus RNA dependent RNA polymerase protein inhibition by bioflavonoids from Azadirachta indica. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-96917-0
  • Eleveld, T. F., Oldridge, D. A., Bernard, V., Koster, J., Colmet Daage, L., Diskin, S. J., Schild, L., Bentahar, N. B., Bellini, A., Chicard, M., Lapouble, E., Combaret, V., Legoix-Né, P., Michon, J., Pugh, T. J., Hart, L. S., Rader, J., Attiyeh, E. F., Wei, J. S., … Maris, J. M. (2015). Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nature Genetics, 47(8), 864–871. https://doi.org/10.1038/ng.3333
  • Fan, J., Kuai, B., Wu, G., Wu, X., Chi, B., Wang, L., Wang, K., Shi, Z., Zhang, H., Chen, S., He, Z., Wang, S., Zhou, Z., Li, G., & Cheng, H. (2017). Exosome cofactor hMTR 4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. The EMBO Journal, 36(19), 2870–2886. https://doi.org/10.15252/embj.201696139
  • Flahaut, M., Meier, R., Coulon, A., Nardou, K. A., Niggli, F. K., Martinet, D., Beckmann, J. S., Joseph, J.-M., Mühlethaler-Mottet, A., & Gross, N. (2009). The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/β-catenin pathway. Oncogene, 28(23), 2245–2256. https://doi.org/10.1038/onc.2009.80
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Ghosh, A., Sarmah, P., Patel, H., Mukerjee, N., Mishra, R., Alkahtani, S., Varma, R. S., & Baishya, D. (2022). Nonlinear molecular dynamics of quercetin in Gynocardia odorata and Diospyros malabarica fruits: Its mechanistic role in hepatoprotection. Plos One, 17(3), e0263917. https://doi.org/10.1371/journal.pone.0263917
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Greengard, E. (2018). Molecularly targeted therapy for neuroblastoma. Children, 5(10), 142. https://doi.org/10.3390/children5100142
  • Gromadzka, A. M., Steckelberg, A.-L., Singh, K. K., Hofmann, K., & Gehring, N. H. (2016). A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Research, 44(5), 2348–2361. https://doi.org/10.1093/nar/gkw009
  • Guterres, H., & Im, W. (2020). Improving protein-ligand docking results with high-throughput molecular dynamics simulations. Journal of Chemical Information and Modeling, 60(4), 2189–2198. https://doi.org/10.1021/acs.jcim.0c00057
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Huang, M., & Weiss, W. A. (2013). Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine, 3(10), a014415. https://doi.org/10.1101/cshperspect.a014415
  • Ibrahim, M. A. A., Badr, E. A. A., Abdelrahman, A. H. M., Almansour, N. M., Shawky, A. M., Mekhemer, G. A. H., Alrumaihi, F., Moustafa, M. F., & Atia, M. A. M. (2021). Prospective drug candidates as human multidrug transporter ABCG2 inhibitors: An in silico drug discovery study. Cell Biochemistry and Biophysics, 79(2), 189–200. https://doi.org/10.1007/s12013-021-00985-y
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jemaà, M., Sime, W., Abassi, Y., Lasorsa, V. A., Køhler, J. B., Michaelis, M., Cinatl, J., Capasso, M., & Massoumi, R. (2020). Gene expression signature of acquired chemoresistance in neuroblastoma cells. International Journal of Molecular Sciences, 21(18), 6811. https://doi.org/10.3390/ijms21186811
  • Johnsen, J. I., Dyberg, C., & Wickström, M. (2019). Neuroblastoma—A neural crest derived embryonal malignancy. Frontiers in Molecular Neuroscience, 12, 9. https://doi.org/10.3389/fnmol.2019.00009
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Katahira, J. (2012). mRNA export and the TREX complex. Biochimica et Biophysica Acta, 1819(6), 507–513. https://doi.org/10.1016/j.bbagrm.2011.12.001
  • Lee, K. E., Bharadwaj, S., Sahoo, A. K., Yadava, U., & Kang, S. G. (2021). Determination of tyrosinase-cyanidin-3-O-glucoside and (−/+)-catechin binding modes reveal mechanistic differences in tyrosinase inhibition. Scientific Reports, 11(1), 24494. https://doi.org/10.1038/s41598-021-03569-1
  • Lieu, E. L., Nguyen, T., Rhyne, S., & Kim, J. (2020). Amino acids in cancer. Experimental & Molecular Medicine, 52(1), 15–30. https://doi.org/10.1038/s12276-020-0375-3
  • Lu, J., Hou, X., Wang, C., & Zhang, Y. (2019). Incorporating explicit water molecules and ligand conformation stability in machine-learning scoring functions. Journal of Chemical Information and Modeling, 59(11), 4540–4549. https://doi.org/10.1021/acs.jcim.9b00645
  • Ma, P., Yue, L., Zhang, S., Hao, D., Wu, Z., Xu, L., Du, G., & Xiao, P. (2020). Target RNA modification for epigenetic drug repositioning in neuroblastoma: Computational omics proximity between repurposing drug and disease. Aging, 12(19), 19022–19044. https://doi.org/10.18632/aging.103671
  • Maris, J. M., Hogarty, M. D., Bagatell, R., & Cohn, S. L. (2007). Neuroblastoma. Lancet (London, England), 369(9579), 2106–2120. https://doi.org/10.1016/S0140-6736(07)60983-0
  • Matthay, K. K., Maris, J. M., Schleiermacher, G., Nakagawara, A., Mackall, C. L., Diller, L., & Weiss, W. A. (2016). Neuroblastoma. Nature Reviews Disease Primers, 2(1), 16078. https://doi.org/10.1038/nrdp.2016.78
  • Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, M. P., Mosquera, J. F., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C. J., Segura-Cabrera, A., Hersey, A., & Leach, A. R. (2019). ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930–D940. https://doi.org/10.1093/nar/gky1075
  • Nagpal, P., Jamal, S., Singh, H., Ali, W., Tanweer, S., Sharma, R., Grover, A., & Grover, S. (2020). Long-range replica exchange molecular dynamics guided drug repurposing against tyrosine kinase PtkA of Mycobacterium tuberculosis. Scientific Reports, 10(1), 4413. https://doi.org/10.1038/s41598-020-61132-w
  • Nagy, Z., Seneviratne, J. A., Kanikevich, M., Chang, W., Mayoh, C., Venkat, P., Du, Y., Jiang, C., Salib, A., Koach, J., Carter, D. R., Mittra, R., Liu, T., Parker, M. W., Cheung, B. B., & Marshall, G. M. (2021). An ALYREF-MYCN coactivator complex drives neuroblastoma tumorigenesis through effects on USP3 and MYCN stability. Nature Communications, 12(1), 1881. https://doi.org/10.1038/s41467-021-22143-x
  • Nath, O., Singh, A., & Singh, I. K. (2017). In-silico drug discovery approach targeting receptor tyrosine kinase-like orphan receptor 1 for cancer treatment. Scientific Reports, 7(1), 1029. https://doi.org/10.1038/s41598-017-01254-w
  • Naz, F., Kumar, M., Koley, T., Sharma, P., Haque, M. A., Kapil, A., Kumar, M., Kaur, P., & Ethayathulla, A. S. (2022). Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. International Journal of Biological Macromolecules, 219, 428–437. https://doi.org/10.1016/J.IJBIOMAC.2022.07.241
  • Nozaki, Y., & Tanford, C. (1965). The solubility of amino acids and related compounds in aqueous thylene glycol solutions. The Journal of Biological Chemistry, 240(9), 3568–3575. https://doi.org/10.1016/S0021-9258(18)97181-4
  • Okada, M., & Ye, K. (2009). Nuclear phosphoinositide signaling regulates messenger RNA export. RNA Biology, 6(1), 12–16. https://doi.org/10.4161/rna.6.1.7439
  • Park, J. R., & Bagatell, R. (2016). Neuroblastoma. In J. D. F. Philip Lanzkowsky, Jeffrey M. Lipton (Ed.), Lanzkowsky’s manual of pediatric hematology and oncology (6th ed., pp. 473–490). Elsevier. https://doi.org/10.1016/B978-0-12-801368-7.00024-7
  • Pérez-Alvarado, G. C., Martínez-Yamout, M., Allen, M. M., Grosschedl, R., Dyson, H. J., & Wright, P. E. (2003). Structure of the nuclear factor ALY: Insights into post-transcriptional regulatory and mRNA nuclear export processes. Biochemistry, 42(24), 7348–7357. https://doi.org/10.1021/bi034062o
  • Prajapati, B., Fatma, M., Fatima, M., Khan, M. T., Sinha, S., & Seth, P. K. (2019). Identification of lncRNAs associated with neuroblastoma in cross-sectional databases: Potential biomarkers. Frontiers in Molecular Neuroscience, 12, 293. https://doi.org/10.3389/fnmol.2019.00293
  • Pühringer, T., Hohmann, U., Fin, L., Pacheco-Fiallos, B., Schellhaas, U., Brennecke, J., & Plaschka, C. (2020). Structure of the human core transcription-export complex reveals a hub for multivalent interactions. eLife, 9, 1–65. https://doi.org/10.7554/eLife.61503
  • Rose, Y., Duarte, J. M., Lowe, R., Segura, J., Bi, C., Bhikadiya, C., Chen, L., Rose, A. S., Bittrich, S., Burley, S. K., & Westbrook, J. D. (2021). RCSB protein data bank: Architectural advances towards integrated searching and efficient access to macromolecular structure data from the PDB archive. Journal of Molecular Biology, 433(11), 166704. https://doi.org/10.1016/j.jmb.2020.11.003
  • Saito, Y., Kasamatsu, A., Yamamoto, A., Shimizu, T., Yokoe, H., Sakamoto, Y., Ogawara, K., Shiiba, M., Tanzawa, H., & Uzawa, K. (2013). ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 139(4), 585–594. https://doi.org/10.1007/s00432-012-1361-5
  • Santos, L. H. S., Ferreira, R. S., & Caffarena, E. R. (2019). Integrating molecular docking and molecular dynamics simulations. In Methods in molecular biology (vol. 2053, pp. 13–34). Springer. https://doi.org/10.1007/978-1-4939-9752-7_2
  • Sastry, B. S., Suresh Babu, K., Hari Babu, T., Chandrasekhar, S., Srinivas, P. V., Saxena, A. K., & Madhusudana Rao, J. (2006). Synthesis and biological activity of amide derivatives of nimbolide. Bioorganic & Medicinal Chemistry Letters, 16(16), 4391–4394. https://doi.org/10.1016/j.bmcl.2006.05.105
  • Schleiermacher, G., Janoueix-Lerosey, I., Ribeiro, A., Klijanienko, J., Couturier, J., Pierron, G., Mosseri, V., Valent, A., Auger, N., Plantaz, D., Rubie, H., Valteau-Couanet, D., Bourdeaut, F., Combaret, V., Bergeron, C., Michon, J., & Delattre, O. (2010). Accumulation of segmental alterations determines progression in neuroblastoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(19), 3122–3130. https://doi.org/10.1200/JCO.2009.26.7955
  • Schönherr, C., Ruuth, K., Kamaraj, S., Wang, C.-L., Yang, H.-L., Combaret, V., Djos, A., Martinsson, T., Christensen, J. G., Palmer, R. H., & Hallberg, B. (2012). Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene, 31(50), 5193–5200. https://doi.org/10.1038/onc.2012.12
  • Shi, M., Zhang, H., Wu, X., He, Z., Wang, L., Yin, S., Tian, B., Li, G., & Cheng, H. (2017). ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo. Nucleic Acids Research, 45(16), 9640–9653. https://doi.org/10.1093/nar/gkx597
  • Shukla, P. K., Sinha, D., Leng, A. M., Bissell, J. E., Thatipamula, S., Ganguly, R., Radmall, K. S., Skalicky, J. J., Shrieve, D. C., & Chandrasekharan, M. B. (2022). Mutations of Rad6 E2 ubiquitin-conjugating enzymes at alanine-126 in helix-3 affect ubiquitination activity and decrease enzyme stability. The Journal of Biological Chemistry, 298(11), 102524. https://doi.org/10.1016/j.jbc.2022.102524
  • Singh, M., Malhotra, L., Haque, M. A., Kumar, M., Tikhomirov, A., Litvinova, V., Korolev, A. M., Ethayathulla, A. S., Das, U., Shchekotikhin, A. E., & Kaur, P. (2021). Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie, 182, 152–165. https://doi.org/10.1016/j.biochi.2020.12.024
  • Stubbs, S. H., & Conrad, N. K. (2015). Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy. Nucleic Acids Research, 43(1), 504–519. https://doi.org/10.1093/nar/gku1278
  • Stubbs, S. H., Hunter, O. V., Hoover, A., & Conrad, N. K. (2012). Viral factors reveal a role for REF/Aly in nuclear RNA stability. Molecular and Cellular Biology, 32(7), 1260–1270. https://doi.org/10.1128/MCB.06420-11
  • Stutz, F., Bachi, A., Doerks, T., Braun, I. C., Séraphin, B., Wilm, M., Bork, P., & Izaurralde, E. (2000). REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA (New York, NY), 6(4), 638–650. https://doi.org/10.1017/s1355838200000078
  • Taniguchi, I., & Ohno, M. (2008). ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA Helicase UAP56. Molecular and Cellular Biology, 28(2), 601–608. https://doi.org/10.1128/MCB.01341-07
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Verma, P., Hassan, M. I., Singh, A., & Singh, I. K. (2021). Design and development of novel inhibitors of aldo-ketoreductase 1C1 as potential lead molecules in treatment of breast cancer. Molecular and Cellular Biochemistry, 476(8), 2975–2987. https://doi.org/10.1007/s11010-021-04134-0
  • Viphakone, N., Sudbery, I., Griffith, L., Heath, C. G., Sims, D., & Wilson, S. A. (2019). Co-transcriptional loading of RNA export factors shapes the human transcriptome. Molecular Cell, 75(2), 310–323.e8. https://doi.org/10.1016/j.molcel.2019.04.034
  • Virbasius, C.-M A., Wagner, S., & Green, M. R. (1999). A human nuclear-localized chaperone that regulates dimerization, DNA binding, and transcriptional activity of bZIP proteins. Molecular Cell, 4(2), 219–228. https://doi.org/10.1016/S1097-2765(00)80369-X
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). Endpoint binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design [Review-article]. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J., Li, Y., Xu, B., Dong, J., Zhao, H., Zhao, D., & Wu, Y. (2021). ALYREF drives cancer cell proliferation through an ALYREF-MYC positive feedback loop in glioblastoma. OncoTargets and Therapy, 14, 145–155. https://doi.org/10.2147/OTT.S286408
  • Wang, J., Zhu, W., Han, J., Yang, X., Zhou, R., Lu, H., Yu, H., Yuan, W., Li, P., Tao, J., Lu, Q., Wei, J., & Yang, H. (2021). The role of the HIF‐1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Communications (London, England), 41(7), 560–575. https://doi.org/10.1002/cac2.12158
  • Xue, C., Zhao, Y., Li, G., & Li, L. (2021). Multi-omic analyses of the m5C regulator ALYREF reveal its essential roles in hepatocellular carcinoma. Frontiers in Oncology, 11, 633415. https://doi.org/10.3389/fonc.2021.633415
  • Yan, L., Rosen, N., & Arteaga, C. (2011). Targeted cancer therapies. Chinese Journal of Cancer, 30(1), 1–4. https://doi.org/10.5732/cjc.010.10553
  • Zafar, A., Wang, W., Liu, G., Wang, X., Xian, W., McKeon, F., Foster, J., Zhou, J., & Zhang, R. (2021). Molecular targeting therapies for neuroblastoma: Progress and challenges. Medicinal Research Reviews, 41(2), 961–1021. https://doi.org/10.1002/med.21750
  • Zong, K., Xu, L., Hou, Y., Zhang, Q., Che, J., Zhao, L., & Li, X. (2021). Virtual screening and molecular dynamics simulation study of influenza polymerase PB2 inhibitors. Molecules, 26(22), 6944. https://doi.org/10.3390/molecules26226944

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.