235
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Discovering potential inhibitors of Raf proto-oncogene serine/threonine kinase 1: a virtual screening approach towards anticancer drug development

, , , , , , ORCID Icon, , & show all
Pages 1846-1857 | Received 17 Feb 2023, Accepted 08 Apr 2023, Published online: 27 Apr 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adnan, M., Koli, S., Mohammad, T., Siddiqui, A. J., Patel, M., Alshammari, N., Bardakci, F., Elasbali, A. M., & Hassan, M. I. (2022). Searching for novel anaplastic lymphoma kinase inhibitors: Structure-guided screening of natural compounds for a tyrosine kinase therapeutic target in cancers. Omics, 26(8), 461–470. https://doi.org/10.1089/omi.2022.0067
  • Anjum, F., Mohammad, T., Almalki, A. A., Akhtar, O., Abdullaev, B., & Hassan, M. I. (2021). Phytoconstituents and medicinal plants for anticancer drug discovery: Computational identification of potent inhibitors of PIM1 kinase. Omics, 25(9), 580–590. https://doi.org/10.1089/omi.2021.0107
  • Anjum, F., Sulaimani, M. N., Shafie, A., Mohammad, T., Ashraf, G. M., Bilgrami, A. L., Alhumaydhi, F. A., Alsagaby, S. A., Yadav, D. K., & Hassan, M. I. (2022). Bioactive phytoconstituents as potent inhibitors of casein kinase-2: Dual implications in cancer and COVID-19 therapeutics. RSC Advances, 12(13), 7872–7882. https://doi.org/10.1039/d1ra09339hd1ra09339h[pii]
  • Anwar, S., Khan, S., Shamsi, A., Anjum, F., Shafie, A., Islam, A., Ahmad, F., & Hassan, M. I. (2021). Structure-based investigation of MARK4 inhibitory potential of Naringenin for therapeutic management of cancer and neurodegenerative diseases. Journal of Cellular Biochemistry, 122(10), 1445–1459. https://doi.org/10.1002/jcb.30022
  • Anwar, S., Mohammad, T., Shamsi, A., Queen, A., Parveen, S., Luqman, S., Hasan, G. M., Alamry, K. A., Azum, N., Asiri, A. M., & Hassan, M. I. (2020). Discovery of hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: Implication in lung cancer therapy. Biomedicines, 8(5), 119. https://doi.org/10.3390/biomedicines8050119119
  • Anwar, S., Shamsi, A., Kar, R. K., Queen, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Structural and biochemical investigation of MARK4 inhibitory potential of cholic acid: Towards therapeutic implications in neurodegenerative diseases. International Journal of Biological Macromolecules, 161, 596–604. https://doi.org/10.1016/j.ijbiomac.2020.06.078
  • Anwar, S., Shamsi, A., Shahbaaz, M., Queen, A., Khan, P., Hasan, G. M., Islam, A., Alajmi, M. F., Hussain, A., Ahmad, F., & Hassan, M. I. (2020). Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Scientific Reports, 10(1), 10300. https://doi.org/10.1038/s41598-020-65648-z
  • Avti, P., Chauhan, A., Shekhar, N., Prajapat, M., Sarma, P., Kaur, H., Bhattacharyya, A., Kumar, S., Prakash, A., Sharma, S., & Medhi, B. (2022). Computational basis of SARS-CoV 2 main protease inhibition: An insight from molecular dynamics simulation based findings. Journal of Biomolecular Structure and Dynamics, 40(19), 8894–8904. https://doi.org/10.1080/07391102.2021.1922310
  • Biovia, D. S. (2017). Discovery studio visualizer.
  • Bonner, T., O'Brien, S. J., Nash, W. G., Rapp, U. R., Morton, C. C., & Leder, P. (1984). The human homologs of the Raf (mil) oncogene are located on human chromosomes 3 and 4. Science (New York, N.Y.), 223(4631), 71–74. https://doi.org/10.1126/science.6691137
  • Borovski, T., Vellinga, T. T., Laoukili, J., Santo, E. E., Fatrai, S., van Schelven, S., Verheem, A., Marvin, D. L., Ubink, I., Borel Rinkes, I. H. M., & Kranenburg, O. (2017). Inhibition of RAF1 kinase activity restores apicobasal polarity and impairs tumour growth in human colorectal cancer. Gut, 66(6), 1106–1115. https://doi.org/10.1136/gutjnl-2016-311547
  • Caron, G., Kihlberg, J., Goetz, G., Ratkova, E., Poongavanam, V., & Ermondi, G. (2021). Steering new drug discovery campaigns: Permeability, solubility, and physicochemical properties in the bro5 chemical space. ACS Medicinal Chemistry Letters, 12(1), 13–23. https://doi.org/10.1021/acsmedchemlett.0c00581
  • Chen, L., Wang, Q., Wang, G. D., Wang, H. S., Huang, Y., Liu, X. M., & Cai, X. H. (2013). miR-16 inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma. FEBS Letters, 587(9), 1366–1372. https://doi.org/10.1016/j.febslet.2013.03.007
  • Chong, H., Vikis, H. G., & Guan, K. L. (2003). Mechanisms of regulating the Raf kinase family. Cellular Signalling, 15(5), 463–469. https://doi.org/10.1016/s0898-6568(02)00139-0
  • Cobb, M. H., Hepler, J. E., Cheng, M., & Robbins, D. (1994). The mitogen-activated protein kinases, ERK1 and ERK2. Seminars in Cancer Biology, 5(4), 261–268.
  • Cookis, T., & Mattos, C. (2021). Crystal structure reveals the full Ras-Raf interface and advances mechanistic understanding of Raf activation. Biomolecules, 11(7), 996. https://doi.org/10.3390/biom11070996
  • Dahiya, R., Mohammad, T., Roy, S., Anwar, S., Gupta, P., Haque, A., Khan, P., Kazim, S. N., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigation of inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: Towards implications in anticancer therapy. International Journal of Biological Macromolecules, 136, 1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.158
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40, 82–92.
  • Freedland, S. J., & Aronson, W. J. (2017). Commentary on “Integrative clinical genomics of advanced prostate cancer”. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, Beltran H, Abida W, Bradley RK, Vinson J, Cao X, Vats P, Kunju LP, Hussain M, Feng FY, Tomlins SA, Cooney KA, Smith DC, Brennan C, Siddiqui J, Mehra R, Chen Y, Rathkopf DE, Morris MJ, Solomon SB, Durack JC, Reuter VE, Gopalan A, Gao J, Loda M, Lis RT, Bowden M, Balk SP, Gaviola G, Sougnez C, Gupta M, Yu EY, Mostaghel EA, Cheng HH, Mulcahy H, True LD, Plymate SR, Dvinge H, Ferraldeschi R, Flohr P, Miranda S, Zafeiriou Z, Tunariu N, Mateo J, Perez-Lopez R, Demichelis F, Robinson BD, Schiffman M, Nanus DM, Tagawa ST, Sigaras A, Eng KW, Elemento O, Sboner A, Heath EI, Scher HI, Pienta KJ, Kantoff P, de Bono JS, Rubin MA, Nelson PS, Garraway LA, Sawyers CL, Chinnaiyan AM.Cell. 21 May 2015;161(5):1215–1228. Urologic Oncology, 35(8), 535. https://doi.org/10.1016/j.urolonc.2017.05.010
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gollob, J. A., Wilhelm, S., Carter, C., & Kelley, S. L. (2006). Role of Raf kinase in cancer: Therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Seminars in Oncology, 33(4), 392–406. https://doi.org/10.1053/j.seminoncol.2006.04.002
  • Gupta, P., Khan, S., Fakhar, Z., Hussain, A., Rehman, M. T., AlAjmi, M. F., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase IV from bioactive phytoconstituents. Oxidative Medicine and Cellular Longevity, 2020, 2094635. https://doi.org/10.1155/2020/2094635
  • Gupta, P., Mohammad, T., Dahiya, R., Roy, S., Noman, O. M. A., Alajmi, M. F., Hussain, A., & Hassan, M. I. (2019). Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Scientific Reports, 9(1), 18727. https://doi.org/10.1038/s41598-019-55199-3
  • Hekman, M., Wiese, S., Metz, R., Albert, S., Troppmair, J., Nickel, J., Sendtner, M., & Rapp, U. R. (2004). Dynamic changes in C-Raf phosphorylation and 14-3-3 protein binding in response to growth factor stimulation: Differential roles of 14-3-3 protein binding sites. The Journal of Biological Chemistry, 279(14), 14074–14086. https://doi.org/10.1074/jbc.M309620200
  • Hernández-Rodríguez, M., Rosales-Hernández, M. C., Mendieta-Wejebe, J. E., Martínez-Archundia, M., & Correa Basurto, J. (2016). Current tools and methods in molecular dynamics (MD) simulations for drug design. Current Medicinal Chemistry, 23(34), 3909–3924. https://doi.org/10.2174/0929867323666160530144742
  • Hoda, N., Naz, H., Jameel, E., Shandilya, A., Dey, S., Hassan, M. I., Ahmad, F., & Jayaram, B. (2016). Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: Fluorescence and molecular dynamics simulation studies. Journal of Biomolecular Structure & Dynamics, 34(3), 572–584. https://doi.org/10.1080/07391102.2015.1046934
  • Hu, J., Stites, E. C., Yu, H., Germino, E. A., Meharena, H. S., Stork, P. J. S., Kornev, A. P., Taylor, S. S., & Shaw, A. S. (2013). Allosteric activation of functionally asymmetric RAF kinase dimers. Cell, 154(5), 1036–1046. https://doi.org/10.1016/j.cell.2013.07.046
  • Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550, 92037.
  • Hünenberger, P., Mark, A., & Van Gunsteren, W. (1995). Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. Journal of Molecular Biology, 252(4), 492–503. https://doi.org/10.1006/jmbi.1995.0514
  • Hung, C. L., & Chen, C. C. (2014). Computational approaches for drug discovery. Drug Development Research, 75(6), 412–418. https://doi.org/10.1002/ddr.21222
  • Hwang, Y. H., Choi, J. Y., Kim, S., Chung, E. S., Kim, T., Koh, S. S., Lee, B., Bae, S. H., Kim, J., & Park, Y. M. (2004). Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatology Research, 29(2), 113–121. https://doi.org/10.1016/j.hepres.2004.02.009
  • Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90. https://doi.org/10.3322/caac.20107
  • Jiang, Q., Cheng, L., Ma, D., & Zhao, Y. (2019). FBXL19-AS1 exerts oncogenic function by sponging miR-431-5p to regulate RAF1 expression in lung cancer. Bioscience Reports, 39(1), BSR20181804. https://doi.org/10.1042/BSR20181804
  • Khan, P., Queen, A., Mohammad, T., Smita, Khan, N. S., Hafeez, Z. B., Hassan, M. I., & Ali, S. (2019). Identification of alpha-mangostin as a potential inhibitor of microtubule affinity regulating kinase 4. Journal of Natural Products, 82(8), 2252–2261., https://doi.org/10.1021/acs.jnatprod.9b00372
  • Kordi-Tamandani, D. M., Saberi, E., Jamali, S., & Ladiz, M. A. (2014). ERK and RAF1 genes: Analysis of methylation and expression profiles in patients with oral squamous cell carcinoma. British Journal of Biomedical Science, 71(3), 100–103. https://doi.org/10.1080/09674845.2014.11669972
  • Kyriakis, J. M., App, H., Zhang, X. F., Banerjee, P., Brautigan, D. L., Rapp, U. R., & Avruch, J. (1992). Raf-1 activates MAP kinase-kinase. Nature, 358(6385), 417–421. https://doi.org/10.1038/358417a0
  • Laberge, M., & Yonetani, T. (2008). Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: Effector-linked perturbation of tertiary conformations and HbA concerted dynamics. Biophysical Journal, 94(7), 2737–2751. https://doi.org/10.1529/biophysj.107.114942
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Leng, Q., & Mixson, A. J. (2005). Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Therapy, 12(8), 682–690. https://doi.org/10.1038/sj.cgt.7700831
  • Mahapatra, M. K., Bera, K., Singh, D. V., Kumar, R., & Kumar, M. (2018). In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors. Journal of Biomolecular Structure & Dynamics, 36(5), 1195–1211. https://doi.org/10.1080/07391102.2017.1317026
  • Matallanas, D., Birtwistle, M., Romano, D., Zebisch, A., Rauch, J., von Kriegsheim, A., & Kolch, W. (2011). Raf family kinases: Old dogs have learned new tricks. Genes & Cancer, 2(3), 232–260. https://doi.org/10.1177/1947601911407323
  • McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., Lehmann, B., Terrian, D. M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J., Evangelisti, C., Martelli, A. M., & Franklin, R. A. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773(8), 1263–1284. https://doi.org/10.1016/j.bbamcr.2006.10.001
  • McKay, M. M., & Morrison, D. K. (2007). Integrating signals from RTKs to ERK/MAPK. Oncogene, 26(22), 3113–3121. https://doi.org/10.1038/sj.onc.1210394
  • Miller, B. R., III, McGee, Jr., T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mohammad, T., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). Journal of Biomolecular Structure & Dynamics, 37(7), 1813–1829. https://doi.org/10.1080/07391102.2018.1468282
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics, 22(4), bbaa279. https://doi.org/10.1093/bib/bbaa279
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Morrison, D. K., & Cutler, R. E. (1997). The complexity of Raf-1 regulation. Current Opinion in Cell Biology, 9(2), 174–179. https://doi.org/10.1016/s0955-0674(97)80060-9
  • Morrison, D. K., Heidecker, G., Rapp, U. R., & Copeland, T. D. (1993). Identification of the major phosphorylation sites of the Raf-1 kinase. The Journal of Biological Chemistry, 268(23), 17309–17316.
  • Muslin, A. J., Tanner, J. W., Allen, P. M., & Shaw, A. S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell, 84(6), 889–897. https://doi.org/10.1016/s0092-8674(00)81067-3
  • Naqvi, A. A. T., Jairajpuri, D. S., Hussain, A., Hasan, G. M., Alajmi, M. F., & Hassan, M. I. (2021). Impact of glioblastoma multiforme associated mutations on the structure and function of MAP/microtubule affinity regulating kinase 4. Journal of Biomolecular Structure & Dynamics, 39(5), 1781–1794. https://doi.org/10.1080/07391102.2020.1738959
  • Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Naz, F., Khan, F. I., Mohammad, T., Khan, P., Manzoor, S., Hasan, G. M., Lobb, K. A., Luqman, S., Islam, A., Ahmad, F., & Hassan, M. I. (2018). Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression. International Journal of Biological Macromolecules, 107(Pt B), 2580–2589. https://doi.org/10.1016/j.ijbiomac.2017.10.143
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rajakulendran, T., Sahmi, M., Lefrançois, M., Sicheri, F., & Therrien, M. (2009). A dimerization-dependent mechanism drives RAF catalytic activation. Nature, 461(7263), 542–545. https://doi.org/10.1038/nature08314
  • Ren, G., Liu, X., Mao, X., Zhang, Y., Stankiewicz, E., Hylands, L., Song, R., Berney, D. M., Clark, J., Cooper, C., & Lu, Y. J. (2012). Identification of frequent BRAF copy number gain and alterations of RAF genes in Chinese prostate cancer. Genes, Chromosomes & Cancer, 51(11), 1014–1023. https://doi.org/10.1002/gcc.21984
  • Scapin, G. (2006). Structural biology and drug discovery. Current Pharmaceutical Design, 12(17), 2087–2097. https://doi.org/10.2174/138161206777585201
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shafie, A., Khan, S., Zehra, Mohammad, T., Anjum, F., Hasan, G. M., Yadav, D. K., & Hassan, M. I. (2021). Identification of phytoconstituents as potent inhibitors of casein kinase-1 alpha using virtual screening and molecular dynamics simulations. Pharmaceutics, 13(12), 2157. https://doi.org/10.3390/pharmaceutics13122157
  • Slattery, M. L., Lundgreen, A., & Wolff, R. K. (2012). MAP kinase genes and colon and rectal cancer. Carcinogenesis, 33(12), 2398–2408. https://doi.org/10.1093/carcin/bgs305
  • Steelman, L. S., Chappell, W. H., Abrams, S. L., Kempf, R. C., Long, J., Laidler, P., Mijatovic, S., Maksimovic-Ivanic, D., Stivala, F., Mazzarino, M. C., Donia, M., Fagone, P., Malaponte, G., Nicoletti, F., Libra, M., Milella, M., Tafuri, A., Bonati, A., Bäsecke, J., … McCubrey, J. A. (2011). Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 3(3), 192–222. https://doi.org/10.18632/aging.100296
  • Tran, N. H., & Frost, J. A. (2003). Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. The Journal of Biological Chemistry, 278(13), 11221–11226. https://doi.org/10.1074/jbc.M210318200
  • Weiss, M. S., Brandl, M., Sühnel, J., Pal, D., & Hilgenfeld, R. (2001). More hydrogen bonds for the (structural) biologist. Trends in Biochemical Sciences, 26(9), 521–523. https://doi.org/10.1016/s0968-0004(01)01935-1
  • Wellbrock, C., Karasarides, M., & Marais, R. (2004). The RAF proteins take centre stage. Nature Reviews. Molecular Cell Biology, 5(11), 875–885. https://doi.org/10.1038/nrm1498
  • Widegren, U., Ryder, J., & Zierath, J. (2001). Mitogen‐activated protein kinase signal transduction in skeletal muscle: Effects of exercise and muscle contraction. Acta Physiologica Scandinavica, 172(3), 227–238. https://doi.org/10.1046/j.1365-201x.2001.00855.x
  • Xu, Z. H., Hang, J. B., Hu, J. A., & Gao, B. L. (2013). RAF1-MEK1-ERK/AKT axis may confer NSCLC cell lines resistance to erlotinib. International Journal of Clinical and Experimental Pathology, 6(8), 1493–1504.
  • Yang, C., Alam, A., Alhumaydhi, F. A., Khan, M. S., Alsagaby, S. A., Al Abdulmonem, W., Hassan, M. I., Shamsi, A., Bano, B., & Yadav, D. K. (2022). Bioactive phytoconstituents as potent inhibitors of tyrosine-protein kinase yes (YES1): Implications in anticancer therapeutics. Molecules, 27(10), 3060. https://doi.org/10.3390/molecules27103060
  • Ye, S., Song, W., Xu, X., Zhao, X., & Yang, L. (2016). IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Letters, 590(11), 1641–1650. https://doi.org/10.1002/1873-3468.12205
  • Zlobin, A., Bloodworth, J. C., & Osipo, C. (2019). Mitogen-activated protein kinase (MAPK) signaling. Predictive Biomarkers in Oncology: Applications in Precision Medicine, Springer, Cham. 213–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.