142
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation of the impact of potential AT2R polymorphism on small molecule binding

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 2231-2241 | Received 10 Nov 2022, Accepted 10 Apr 2023, Published online: 28 Apr 2023

References

  • AlAjmi, M. F., Rehman, M. T., Hussain, A., & Rather, G. M. (2018). Pharmacoinformatics approach for the identification of Polo-like kinase-1 inhibitors from natural sources as anti-cancer agents. International Journal of Biological Macromolecules, 116, 173–181. https://doi.org/10.1016/J.IJBIOMAC.2018.05.023
  • Arsenault, J., Lehoux, J., Lanthier, L., Cabana, J., Guillemette, G., Lavigne, P., Leduc, R., & Escher, E. (2010). A single-nucleotide polymorphism of alanine to threonine at position 163 of the human angiotensin II type 1 receptor impairs Losartan affinity. Pharmacogenetics and Genomics, 20(6), 377–388. https://doi.org/10.1097/FPC.0B013E32833A6D4A
  • Barnas, U., Schmidt, A., Illievich, A., Kiener, H. P., Rabensteiner, D., Kaider, A., Prager, R., AbrAHamian, H., Irsigler, K., & Mayer, G. (1997). Evaluation of risk factors for the development of nephropathy in patients with IDDM: Insertion/deletion angiotensin converting enzyme gene polymorphism, hypertension and metabolic control. Diabetologia, 40(3), 327–331. https://doi.org/10.1007/S001250050682
  • Bhardwaj, V. K., Das, P., & Purohit, R. (2023). Integrating microsecond timescale classical and biased molecular dynamics simulations to screen potential molecules for BRD4-BD1. Chaos, Solitons & Fractals, 167, 113061. https://doi.org/10.1016/j.chaos.2022.113061
  • Bhardwaj, V. K., Singh, R., Sharma, J., Das, P., & Purohit, R. (2020). Structural based study to identify new potential inhibitors for dual specificity tyrosine-phosphorylation- regulated kinase. Computer Methods and Programs in Biomedicine, 194, 105494. https://doi.org/10.1016/J.CMPB.2020.105494
  • Carretero, O. A., & Oparil, S. (2000). Essential hypertension. Part I: Definition and etiology. Circulation, 101(3), 329–335. https://doi.org/10.1161/01.CIR.101.3.329
  • Fatima, N., Patel, S. N., & Hussain, T. (2021). Angiotensin II type 2 receptor: A target for protection against hypertension, metabolic dysfunction, and organ remodeling. Hypertension (Dallas, TX: 1979), 77(6), 1845–1856. https://doi.org/10.1161/HYPERTENSIONAHA.120.11941
  • Gard, P. R., Mandy, A., & Sutcliffe, M. A. (1999). Evidence of a possible role of altered angiotensin function in the treatment, but not etiology, of depression. Biological Psychiatry, 45(8), 1030–1034. https://doi.org/10.1016/S0006-3223(98)00101-2
  • Hassan, M., Shahzadi, S., Seo, S. Y., Alashwal, H., Zaki, N., & Moustafa, A. A. (2018). Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against BACE1 to treat Alzheimer’s disease. Frontiers in Computational Neuroscience, 12, 34. https://doi.org/10.3389/FNCOM.2018.00034
  • Jabir, N. R., Shakil, S., Tabrez, S., Khan, M. S., Rehman, M. T., & Ahmed, B. A. (2021). In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer’s disease. Journal of Biomolecular Structure & Dynamics, 39(14), 5083–5092. https://doi.org/10.1080/07391102.2020.1784796/SUPPL_FILE/TBSD_A_1784796_SM7307.PDF
  • Kashyap, M., Jaiswal, V., & Farooq, U. (2017). Prediction and analysis of promiscuous T cell-epitopes derived from the vaccine candidate antigens of Leishmania donovani binding to MHC class-II alleles using in silico approach. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 53, 107–115. https://doi.org/10.1016/J.MEEGID.2017.05.022
  • Kumar, S., Kumar Bhardwaj, V., Singh, R., & Purohit, R. (2021). Explicit-solvent molecular dynamics simulations revealed conformational regain and aggregation inhibition of I113T SOD1 by Himalayan bioactive molecules. Journal of Molecular Liquids, 339, 116798. https://doi.org/10.1016/j.molliq.2021.116798
  • Lavoie, J. L., & Sigmund, C. D. (2003). Minireview: Overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology, 144(6), 2179–2183. https://doi.org/10.1210/EN.2003-0150
  • Levy, B. I. (2005). How to explain the differences between renin angiotensin system modulators. American Journal of Hypertension, 18(9), 134–141. https://doi.org/10.1016/j.amjhyper.2005.05.005
  • Matavelli, L. C., & Siragy, H. M. (2015). AT2 receptor activities and pathophysiological implications. Journal of Cardiovascular Pharmacology, 65(3), 226–232. https://doi.org/10.1097/FJC.0000000000000208
  • Modestia, S. M., Malta De Sá, M., Auger, E., Trossini, G. H. G., Krieger, J. E., & Rangel-Yagui, C. D. O. (2019). Biased agonist TRV027 determinants in AT1R by molecular dynamics simulations. Journal of Chemical Information and Modeling, 59(2), 797–808. https://doi.org/10.1021/ACS.JCIM.8B00628/SUPPL_FILE/CI8B00628_SI_001.PDF
  • Muvva, C., Singam, E. R. A., Raman, S. S., & Subramanian, V. (2014). Structure-based virtual screening of novel, high-affinity BRD4 inhibitors. Molecular bioSystems, 10(9), 2384–2397. https://doi.org/10.1039/C4MB00243A
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Seeliger, D., & De Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/S10822-010-9352-6
  • Sharma, B., Bhattacherjee, D., Zyryanov, G. V., & Purohit, R. (2022). An insight from computational approach to explore novel, high-affinity phosphodiesterase 10A inhibitors for neurological disorders. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2022.2141895/SUPPL_FILE/TBSD_A_2141895_SM7329.PDF
  • Sharma, B., Hussain, T., Khan, M. A., & Jaiswal, V. (2022). Exploring AT2R and its polymorphism in different diseases: An approach to develop AT2R as a drug target beyond hypertension. Current Drug Targets, 23(1), 99–113. https://doi.org/10.2174/1389450122666210806125919
  • Sharma, B., Jaiswal, V., & Khan, M. A. (2021). In silico approach for exploring the role of AT1R polymorphism on its function, structure and drug interactions. Current Computer-Aided Drug Design, 17(7), 927–935. https://doi.org/10.2174/1573409916666201023113709
  • Singh, S., Shankar, R., & Singh, G. P. (2017). Prevalence and associated risk factors of hypertension: A cross-sectional study in urban Varanasi. International Journal of Hypertension, 2017, 5491838. https://doi.org/10.1155/2017/5491838
  • Tabrizi, J. S., Sadeghi-Bazargani, H., Farahbakhsh, M., Nikniaz, L., & Nikniaz, Z. (2016). Prevalence and associated factors of prehypertension and hypertension in Iranian population: The Lifestyle Promotion Project (LPP). Plos One, 11(10), e0165264. https://doi.org/10.1371/journal.pone.0165264
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/JCC.21367
  • Wan, Y., Wallinder, C., Plouffe, B., Beaudry, H., Mahalingam, A. K., Wu, X., Johansson, B., Holm, M., Botoros, M., Karlén, A., Pettersson, A., Nyberg, F., Fändriks, L., Gallo-Payet, N., Hallberg, A., & Alterman, M. (2004). Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. Journal of Medicinal Chemistry, 47(24), 5995–6008. https://doi.org/10.1021/JM049715T
  • Zhang, D., & Lazim, R. (2017). Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Scientific Reports, 7(1), 44651. https://doi.org/10.1038/srep44651
  • Zhang, H., Han, G. W., Batyuk, A., Ishchenko, A., White, K. L., Patel, N., Sadybekov, A., Zamlynny, B., Rudd, M. T., Hollenstein, K., Tolstikova, A., White, T. A., Hunter, M. S., Weierstall, U., Liu, W., Babaoglu, K., Moore, E. L., Katz, R. D., Shipman, J. M., … Cherezov, V. (2017). Structural basis for selectivity and diversity in angiotensin II receptors. Nature, 544(7650), 327–332. https://doi.org/10.1038/nature22035
  • Zhou, J., Xu, X., Liu, J. J., Lin, Y. X., & Gao, G. D. (2007). Angiotensin II receptors subtypes mediate diverse gene expression profile in adult hypertrophic cardiomyocytes. Clinical and Experimental Pharmacology & Physiology, 34(11), 1191–1198. https://doi.org/10.1111/j.1440-1681.2007.04694.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.